
CPGE 1ère année – Louis-le-Grand – Pierre BÉAUR

ProustGPT Activité

06
Entre 1913 et 1927, Marcel Proust a publié À la recherche du temps perdu, roman tellement long qu’il a été édité en

7 tomes, s’étendant sur approximativement 3000 pages. L’objectif de ce TP est d’analyser ce roman d’un point de vue
informatique, avant de construire un générateur de phrases « à la Proust ».

Partie 1 : lecture de fichiers

Les fichiers d’un ordinateur sont organi-
sés sous forme d’arborescence : toutes les
données de l’ordinateur sont stockées dans
des dossiers qui sont inclus les uns dans
les autres en suivant une structure d’arbre.
Toutfichier a une adresse, appelée chemin
absolu : il s’agit du chemin à prendre à par-
tir du dossier racine (ici/) pour arriver jus-
qu’au fichier en question.

Dans l’arborescence ci-contre, dé-
crite pour un système Linux, le che-
min absolu de episode1.mp4 est
/home/Documents/Video/ATLA_saison1/episode1.mp4.

/
home

Documents
Video

les_temps_modernes.mp4
the_imitation_game.mp4
ATLA_saison1

episode1.mp4

Telechargements
programmeMPSI.pdf
happy_cat.gif

Dans ceTP, nous allons ouvrir à l’aide de Pythondes fichiers textes (sous formattxt).Onutilise pour cela les fonctions
open, read (ou readlines), split et close. À gauche est décrite la syntaxe associée à la manipulation d’un fichier
nommé « file.txt».

fichier = open(chemin, MODE) ouvre le fichier correspondant au chemin absolu, qui est désor-
maismanipulable par le biais de la variablefichier. Le chemin
absolu est écrit sous le format d’un string.MODE est un argument
optionnel, et représente le mode de lecture : s’il vaut "r", le fi-
chier est en lecture seule ;"w" signifiequ’on écrase le fichier pour
pouvoir écrire dessus ; "a" signifie que le fichier est préservé et
que ce qui est écrit sera ajouté à la fin. Par défaut,MODE vaut"r".
Le type de fichier est très particulier, et n’est pasmanipulable
directement.

texte = fichier.read(N) supprime les N premiers caractères de fichier pour les stocker
dans texte. texte est désormais une chaîne de caractères. At-
tention : la commande nemodifie pas le fichier lui-même, seule-
ment ce qui est contenu dans la variable fichier. N est option-
nel : si N n’est pas précisé, l’intégralité du fichier est vidée et sto-
ckée dans texte.

texte = fichier.readlines(N) texte contient désormais un tableau de strings : chaque string
correspondant à une ligne du fichier initial. N est optionnel, et
signifie qu’on a lu les N premières lignes de fichier.

fichier.close() ferme l’accès au fichier. À mettre après avoir terminé la lecture
d’un fichier.

1



Exercice 1

1. Télécharger le fichier du_cote_de_chez_swann.txt, et le placer dans le dossier Documents.
2. Le cheminde ce fichier est"C:\\Users\\User\\Documents\\du_cote_de_chez_swann.txt" : ou-

vrir, dans la fenêtre de gauche, le fichier dans une variable fichier1.
3. En utilisant readlines, créer une variable tome1 contenant l’intégralité du premier tome. À quoi corres-

pond une case de tome1?
4. Observer tome1[0] : vous observez un problème d’encodage. Pour le régler, il faut modifier ce que vous

avez écrit selon le format fichier = open(chemin, MODE, encoding = "utf-8").
5. De même, créer des variables tome2 pour le second tome. On fera bien attention à bien fermer le fichier

entre deux lectures.Vous pourrez ajouter les autres tomes lorsque vous aurez atteint la partie 3, mais
pas maintenant.

6. Créer une variable oeuvre_integrale contenant l’intégralité de l’œuvre.
7. Quelle est la longueur du plus long paragraphe de l’oeuvre?
8. Combien y a-t-il de dialogues commençant par un tiret? (pour obtenir le caractère tiret utilisé dans le docu-

ment, on pourra ouvrir l’un des romans avec le bloc-notes et copier-coller le caractère-tiret correspondant,
qui n’est pas le tiret classique).

9. Vérifier ce que vaut oeuvre_integrale[7]. Que cela représente-t-il ? S’agit-il d’un ou de plusieurs carac-
tères?

10. Vérifier à la fin de oeuvre_integrale[8] : le dernier caractère est-il utile?
11. Modifier oeuvre_integrale pour qu’elle ne contienne plus ces informations inutiles.

Partie 2 : analyse du texte

Exercice 2

Pour mieux analyser le travail de Proust, il faut découper chaque paragraphe en mots.
1. Tester la commande : "oui bonjour coucou".split(sep = " "). En déduire l’objectif et la syntaxe

de la méthode split.
2. Afin de mieux comprendre comment fonctionne split, écrire une fonction

split_a_la_main(texte,sep) qui renvoie ce que fait split, mais en le codant à la main.

Désormais, vous pouvez librement utiliser split.
3. Créer une variable oeuvre_mots qui contient les données stockées dans oeuvre_integrale, mais dé-

coupées mot à mot : on ignorera pour le moment les problèmes dûs aux signes de ponctuation, ainsi que la
casse (majuscule vs. minuscule). Combien de mots obtenez-vous au total dans le roman?

Exercice 3

On cherche à obtenir les nombres d’occurrences de chaque mot apparaissant dans le roman.
Pour cela, nous utiliserons la structure de données de dictionnaires : si vous ne l’avez pas déjà fait, c’est le moment
de lire la feuille qui les présente !

1. Tester dans l’invite de commandes la commande "Qu'ouis-je?".lower().
2. Créer une variable occurrences, qui est un dictionnaire vide.
3. Écrire un script permettant de remplir occurrences avec les occurrences des différents mots apparaissant

dans le texte. Par exemple, à la fin de votre script, occurrences["combray"] vaudra 75.
4. Combien de mots différents apparaissent dans le roman? Quel est le mot le plus long apparaissant dans le

roman?

2



Exercice 4

La loi de Zipf est une règle empirique qui établit que la distribution des occurrences des mots suit une loi inverse :
considérons le mot le plus courant de l’œuvre (il s’agit de «de»). Alors le 2èmemot le plus courant sera 2 fois plus
rare ; le 3ème 3 fois plus rare ; etc. Nous allons observer sur notre œuvre si la loi de Zipf est vérifiée.
Écrire une fonction zipf(), qui :

— trie, dans l’ordre décroissant, les occurrences des mots ;
— trace la courbe correspondant aux occurrences des 1000 mots les plus courants (au-delà, le graphe est trop

aplati).
Selon l’algorithme de tri utilisé, l’exécution risque d’être longue („ 3minutes). On pourra rajouter quelque chose dans
la boucle for de la forme if i%100==0: print(i) afin de s’assurer que le programme tourne toujours comme
prévu.

Partie 3 : génération aléatoire de texte

Vous pouvez rajouter les 5 autres tomes. Si votre Pyzo crashe, retirez quelques tomes.

Exercice 5

1. Créer un dictionnaire suivant, de telle sorte que suivant[m] renvoie la liste (avec répétitions) des mots
suivants m dans le roman. Par exemple, suivant["survivait"] renverra ['pendant', 'quelque',
'en', 'plus', 'à'] : ce sont les mots qui succèdent à « survivait » dans le roman, à unmoment ou un
autre.

2. Importer au début du fichier la bibliothèque random sous l’alias rd, et tester plusieurs fois dans l’invite de
commandes rd.randint(2,4).

3. Écrire une fonction proust_gpt(début,longueur) qui renvoie une phrase commençant par le mot
début, et qui contient au total longueur mots, à la manière de Proust : on tirera le mot à utiliser aléatoi-
rement parmi les successions possibles du mot précédent.

4. Écrire une fonction proust_phrase(début) qui renvoie une phrase commençant par le mot début et
terminant par un point.

5. Tester le texte généré : est-il de bonne qualité?

Exercice 6

Pour améliorer la qualité du texte généré, une idée consiste à générer le mot suivant non pas seulement à partir du
mot précédent, mais à partir des deux mots précédents.

1. Créer une variable suivant2, dont les clés sont des tuples (mot1,mot2), de sorte que
suivante2[mot1,mot2] contiennent les mots apparaissant après mot1 puis mot2.

2. Écrire une fonction proust_gpt_2(début) qui renvoie une phrase commençant par le mot début et
terminant par un point.

3


	lecture de fichiers
	analyse du texte
	génération aléatoire de texte

