CPGE 1ére année — Louis-le-Grand — Pierre BEAUR

Activité

ProustGPT Bjra

Entre 1913 et 1927, Marcel Proust a publié 4 la recherche du temps perdu, roman tellement long qu’il a été édité en
7 tomes, sétendant sur approximativement 3000 pages. L'objectif de ce TP est d’analyser ce roman d’un point de vue
informatique, avant de construire un générateur de phrases « a la Proust ».

Partie 1 : lecture de fichiers

Les fichiers d’un ordinateur sont organi- /
sés sous forme d’arborescence : toutes les A
données de l'ordinateur sont stockées dans | " Documents Tttt
des dossiers qui sont inclus les uns dans | | = Video
les autres en suivant une structure d’arbre. ; | ! es_temps_modernes.mp4
Tout fichier a une adresse, appelée chemin | | | he_ imitgt ion_game.mp4
absolu : il s’agit du chemin A prendre par- i i | ATLA saisonl
tir du dossier racine (ici /) pour arriver jus- } | :] &ﬁ?lisfq‘?% :Iflfi"}i o
qu’au fichier en question. | | s
| —Telechargements
Dans larborescence ci-contre, dé- i } ! *programmeMPS'I -pdf
crite. pour un systtme Linux, le che- i 1 p—_happy_cat.gif ________

min absolu de episodel.mp4 est e
/home/Documents/Video/ATLA saisonl/episodel.mp4.

Dans ce TP, nous allons ouvrir a 'aide de Python des fichiers textes (sous format txt). On utilise pour cela les fonctions
open, read (ou readlines), split et close. A gauche est décrite la syntaxe associée 4 la manipulation d’un fichier
nommé « file.txt ».

fichier = open(chemin, MODE) | ouvre le fichier correspondant au chemin absolu, qui est désor-
mais manipulable par le biais de la variable fichier. Le chemin
absolu est écrit sous le format d’un string. MODE est un argument
optionnel, et représente le mode de lecture : §’il vaut "r", le fi-
chier esten lecture seule; "w" signifie qu’on écrase le fichier pour
pouvoir écrire dessus; "a" signifie que le fichier est préservé et
que ce qui est écrit sera ajouté ala fin. Par défaut, MODE vaut "r".
Le type de fichier est tres particulier, et n’est pas manipulable
directement.

texte = fichier.read(N) supprime les N premiers caracteres de fichier pour les stocker
dans texte. texte est désormais une chaine de caractéres. At-
tention : la commande ne modifie pas le fichier lui-méme, seule-
ment ce qui est contenu dans la variable fichier. N est option-
nel : si N n’est pas précisé, l'intégralité du fichier est vidée et sto-
ckée dans texte.

texte = fichier.readlines(N) | texte contient désormais un tableau de strings : chaque string

correspondant a une ligne du fichier initial. N est optionnel, et
signifie qu’on a lu les N premicres lignes de fichier.
fichier.close() ferme lacces au fichier. A mettre apres avoir terminé la lecture

d’un fichier.

10.
11.

Exercice 1

. Télécharger le fichier du_cote_de_chez_swann.txt, et le placer dans le dossier Documents.

. Lechemin de ce fichierest "C: \\Users\\User\\Documents\\du_cote_de_chez_swann.txt":ou-

vrir, dans la fenétre de gauche, le fichier dans une variable fichieri.

En utilisant readlines, créer une variable tome1 contenant I'intégralité du premier tome. A quoi corres-
pond une case de tomel?

Observer tome1 [0] : vous observez un probléeme d’encodage. Pour le régler, il faut modifier ce que vous
avez écrit selon le format fichier = open(chemin, MODE, encoding = "utf-8").

De méme, créer des variables tome2 pour le second tome. On fera bien attention a bien fermer le fichier
entre deux lectures. Vous pourrez ajouter les autres tomes lorsque vous aurez atteint la partie 3, mais
pas maintenant.

6. Créer une variable oeuvre_integrale contenant I'intégralité de I'ceuvre.

Quelle est la longueur du plus long paragraphe de I'oeuvre ?

8. Combien y a-t-il de dialogues commengant par un tiret? (pour obtenir le caractere tiret utilisé dans le docu-

ment, on pourra ouvrir 'un des romans avec le bloc-notes et copier-coller le caractere-tiret correspondant,
qui n’est pas le tiret classique).

Vérifier ce que vaut oeuvre_integrale [7]. Que cela représente-t-il ? Sagit-il d’un ou de plusieurs carac-
téres ?

Vérifier ala fin de oeuvre_integrale[8] : le dernier caractere est-il utile ?

Modifier oeuvre_integrale pour qu'elle ne contienne plus ces informations inutiles.

Partie 2 : analyse du texte

Exercice 2

Pour mieux analyser le travail de Proust, il faut découper chaque paragraphe en mots.

1.

2.

Tester la commande: "oui bonjour coucou".split(sep = "

de la méthode split.

"). En déduire l'objectif et la syntaxe

Afin de mieux comprendre comment fonctionne split, écrire une fonction
split_a_la_main(texte,sep) quirenvoie ce que fait split, mais en le codant a la main.

Désormais, vous pouvez librement utiliser split.

Créer une variable oeuvre_mots qui contient les données stockées dans oeuvre_integrale, mais dé-
coupées mot a mot : on ignorera pour le moment les problemes ds aux signes de ponctuation, ainsi que la
casse (majuscule vs. minuscule). Combien de mots obtenez-vous au total dans le roman ?

Exercice 3

On cherche 4 obtenir les nombres doccurrences de chaque mot apparaissant dans le roman.
Pour cela, nous utiliserons la structure de données de dictionnaires : si vous ne I'avez pas déja fait, c’est le moment
de lire la feuille qui les présente!

1.
2.
3.

Tester dans I'invite de commandes la commande "Qu' ouis-je?".lower ().
Créer une variable occurrences, qui est un dictionnaire vide.

Ecrire un script permettant de remplir occurrences avec les occurrences des différents mots apparaissant
dans le texte. Par exemple, 4 la fin de votre script, occurrences ["combray"] vaudra 75.

. Combien de mots différents apparaissent dans le roman ? Quel est le mot le plus long apparaissant dans le

roman?

Exercice 4

Laloi de Zipf est une regle empirique qui établit que la distribution des occurrences des mots suit une loi inverse :
considérons le mot le plus courant de I'ceuvre (il s’agit de « de »). Alors le 2¢me mot le plus courant sera 2 fois plus

rare; le 3¢me 3 fois plus rare; etc. Nous allons observer sur notre ceuvre si la loi de Zipf est vérifiée.

Ecrire une fonction zipf (), qui:

— trie, dans 'ordre décroissant, les occurrences des mots;

— trace la courbe correspondant aux occurrences des 1000 mots les plus courants (au-dela, le graphe est trop

aplati).

Selon L algorithme de tri utilisé, 'exécution risque d étre longue (~ 3 minutes). On pourra rajouter quelque chose dans
la boucle fordela forme if i%100==0: print (i) afin desuassurer que le programme tourne toujours comme

prévu.

Partie 3 : génération aléatoire de texte

Vous ponvez rajouter les S autres tomes. Si votre Pyzo crashe, retirez qudquex tomes.

Exercice 5
1.

Créer un dictionnaire suivant, de telle sorte que suivant [m] renvoie la liste (avec répétitions) des mots
suivants m dans le roman. Par exemple, suivant ["survivait"] renverra ['pendant', 'quelque',
'en', 'plus', 'a']:cesontlesmotsquisuccedenta «survivait» dans le roman, 3 un moment ou un
autre.

Importer au début du fichier la bibliotheque random sous l’alias rd, et tester plusieurs fois dans I'invite de
commandes rd.randint (2,4).

Ecrire une fonction proust_gpt (début,longueur) qui renvoie une phrase commengant par le mot
début, et qui contient au total longueur mots, a la maniere de Proust : on tirera le mot 4 utiliser aléatoi-
rement parmi les successions possibles du mot précédent.

Ecrire une fonction proust_phrase(début) qui renvoie une phrase commengant par le mot début et
terminant par un point.

. Tester le texte généré : est-il de bonne qualité?

Exercice 6

Pour améliorer la qualité du texte généré, une idée consiste a générer le mot suivant non pas seulement a partir du
mot précédent, mais 4 partir des deux mots précédents.

1. Créer une variable suivant2, dont les clés sont des tuples (motl,mot2), de sorte que

suivante2[mot1,mot2] contiennent les mots apparaissant aprés mot1 puis mot2.

2. Ecrire une fonction proust_gpt_2(début) qui renvoie une phrase commengant par le mot début et

terminant par un point.

	lecture de fichiers
	analyse du texte
	génération aléatoire de texte

