CPGE 2éme année — Louis-le-Grand — Pierre BEAUR

Dictionnaires et tables de hachage

1 Dictionnaires en Python

1.1 Vocabulaire

Les dictionnaires sont une structure de données, qui est une « version alternative » des tableaux : dans un diction-
naire, les indices ne sont pas nécessairement des entiers.

i 0 1 2 3 4 5 6 7 8 9
. ___]
tabl[i] 1 2 3 5 8 13 21 34 55 89
CléS "bOb" "ZOG" "ben" "ada" "moe" ulean "kit" "bea" "sam" "pam"
. ______________________________________]
valeurs 14 12 7 19 6 13 10 6 17 9

Les dictionnaires en Python sont :
— mutables : on peut en modifier les valeurs;
— dynamiques : on peut rajouter des valeurs;

— on peut méme supprimer des valeurs.

1.2 Syntaxe en Python

création d’un dictionnaire vide d = {}
ajout d’une case d[nv_cle] = valeur
modification d’une case d[cle] = nv_valeur
suppression d’une case del dlclel
longueur len(d)
parcours des clés d’'un dictionnaire for x in d :
tester si une clé existe cle in d
tableau des clés d’un dictionnaire d.keys()
tableau des valeurs d’un dictionnaire d.values()
tableau des couples (clé,valeur) d’un dictionnaire d.items()

1.3 Remarques supplémentaires sur les dictionnaires en Python

— Il existe un transtypage des tableaux de couples vers les dictionnaires.

Par exemple,sionauntableaut = [("a",1),("b",2),("c",3)],dict(t) créeraledictionnaire{'a"': 1,
'p': 2, 'c¢': 3}

— Les clés ne peuvent pas prendre des types mutables : les tuples sont autorisés, mais pas les tableaux.

— Les clés peuvent étre autre chose que des string, et peuvent étre de différents types, tout comme les valeurs.

2 Dictionnaires et tables de hachage

Pour implémenter dans la machine les dictionnaires, Python a recours 4 ce qu'on appelle des tables de hachage.

2.1 Spécification du probléeme a résoudre

Pour implémenter des dictionnaires, on voudrait :

— pouvoir ajouter une case;

— pouvoir modifier une case;

— pouvoir accéder a une case;

— pouvoir supprimer une case.

— tout cela avec des clés qui ne sont pas des entiers.

2.2 Et dans le cas des tableaux ?

Cette explication est valide dans le langage C, et tient, dans esprit, pour le langage Python.
L’implémentation des tableaux en machine repose sur le fonctionnement de la mémoire. Chaque case mémoire d’une
machine dispose d’une adresse, qui est un entier (typiquement sur 64 bits). Un tableau t est alors en fait I'adresse mémoire

d’une case particuliere (par exemple #A024F3).

Pour obtenir /e contenu d’une case du tableau, on demande alors t [0] : la machine comprend qu’elle doit donner le
contenu situé 4 la case dont 'adresse mémoire vaut #A024F3 + 0. De mani¢re générale, si on demande t [k], la machine
renvoie le contenu situé 4 la case d’adresse #A024F3 + k. Pour connaitre la case 4 manipuler, la machine fait une simple

addition : c’est ce qu’on appelle I'arithmétique des pointeurs.

Cette technique ne peut pas marcher directement dans le cas des dictionnaires, car il nest pas possible de faire de

larithmétique avec tout type de clé possible et imaginable.

adresses mémoire

contenu des cases

2.3 Tables de hachage

Pour implémenter un dictionnaire, une idée est alors de tout de méme considérer un dictionnaire comme un tableau,

#A024F3|#A024F4

#A024F5

#A024F6

#A024F7|#A024F8

#A024F9

#A024FA|#A024FB

#A024FC

11

18

29

47 | 76

en construisant une fonction qui transforme les clés en entiers :

clés

adresses mémoire

valeurs

La fonction h est appelée fonction de hachage. Pour que nos calculs soient efficaces, on a besoin que le calcul d’'une

"bob" | "zoe" | "ben" | "ada" | "moe" | "lea" | "kit" | "bea" | "sam" ”pam"
#A024F3 | #A024F4 | #A024F5 | #A024F6 | #A024F7 | #A024F8 | #A024F9 | #A024FA | #A024FB | #A024FC
14 12 7 19 6 13 10 6 17 9

image par h se fasse en O(1).

#A024F3

2.4 Difficultés autour des fonctions de hachage

Générer des fonctions de hachage est une tiche tres difficile, car il faut remplir beaucoup de contraintes en le moins de
temps possible. En fait, c’est une tiche #70p difficile, et les fonctions de hachage peuvent ne pas étre injectives.

CIéS "bOb" "Zo0e" | "ben" "ada" umoen "1ea" "kit" "bea" "sam" "pam"

\/ i

adresses mémoire #A024F3 | #A024F4 | #A024F5 | #A024F6 | #A024F7 | #A024F8 | #A024F9 | #A024FA | #A024FB | #A024FC

valeurs 13

Dans ce cas, notre implémentation d’un dictionnaire est ratée : nos deux clés n’'ont pas des résultats indépendants.

2.4.1 Premiére solution : avoir beaucoup plus de cases remplissables que de clés

On peut décorréler l'espace des clés et 'espace mémoire alloué au dictionnaire pour qu’ils n’aient pas la méme taille.

CléS Ilbenll lladall Ilmoeﬂ Hleall Hkitll

‘\

adresses mémoire #A024F3 | #A024F4 | #A024F5 | #A024F6 | #A024F7 | #A024F8 | #A024F9 | #A024FA | #A024FB | #A024FC

valeurs 13 18 9 15 4

On diminue alors la probabilité de collisions. Mieux encore, si on a créé une collision, on peut, en peu de temps,
générer une nouvelle fonction de hachage qui n’aura pas de collision. En notant n le nombre de clés et m le nombre de
cases mémoire réservées, on appelle facteur de charge le rapport n/m. Plus le facteur de charge est important, plus la
mémoire est utilisée efficacement, mais plus il y a de risques de collision. En pratique, on choisit généralement un facteur

de charge de ~ 0.75.

2.4.2 Deuxiéme solution : stocker des listes

Plutét que de ne stocker qu’une seule valeur par case, on peut stocker une liste de valeurs : s’il y a collision, on a alors
les différents résultats possibles.

CléS llbobH "Zoe" llbenll ||ada|| ||moe|| llleall ||kit|| llbeall "Sam” ”panl"
h
adresses mémoire | #A024F3 | #A024F4 | #A024F5 | #A024F6 $ao2ary #A024F8 #4024F9 #A024FA | #A024FB | #A024FC
[("ben",13)
valeurs
, ("bea",17)]

On peut se dire qu'on a déplacé le probleme de I'implémentation des dictionnaires un cran plus bas. L'avantage est
que, si notre fonction de hachage n’est pas trop mauvaise, on a considérablement réduit la taille des nouvelles tables de
hachage a construire.

2.4.3 En pratique

En pratique, les deux solutions sont combinées : on a 4 la fois plus d’espace que nécessaire, et de la gestion de collision
par sous-tables de hachage.
Concernant les fonctionnalités a implémenter :

— Tajout de cases 4 un dictionnaire se fait en ajoutant des cases mémoire allouées, et en modifiant la fonction de

hachage;

— la suppression de cases se fait en modifiant la fonction de hachage. Si on a alloué « trop » d'espace mémoire, on
peut aussi désallouer de la mémoire. Il faut cependant faire attention a des phénomenes de seuil.

	Dictionnaires en Python
	Vocabulaire
	Syntaxe en Python
	Remarques supplémentaires sur les dictionnaires en Python

	Dictionnaires et tables de hachage
	Spécification du problème à résoudre
	Et dans le cas des tableaux ?
	Tables de hachage
	Difficultés autour des fonctions de hachage
	Première solution : avoir beaucoup plus de cases remplissables que de clés
	Deuxième solution : stocker des listes
	En pratique

