
CPGE 2ème année – Louis-le-Grand – Pierre BÉAUR

Dictionnaires et tables de hachage Cours

04

1 Dictionnaires en Python

1.1 Vocabulaire

Les dictionnaires sont une structure de données, qui est une « version alternative » des tableaux : dans un diction-
naire, les indices ne sont pas nécessairement des entiers.

i 0 1 2 3 4 5 6 7 8 9

tab[i] 1 2 3 5 8 13 21 34 55 89

clés "bob" "zoe" "ben" "ada" "moe" "lea" "kit" "bea" "sam" "pam"

valeurs 14 12 7 19 6 13 10 6 17 9

Les dictionnaires en Python sont :
— mutables : on peut en modifier les valeurs ;
— dynamiques : on peut rajouter des valeurs ;
— on peut même supprimer des valeurs.

1.2 Syntaxe en Python

création d’un dictionnaire vide d = {}
ajout d’une case d[nv_cle] = valeur

modification d’une case d[cle] = nv_valeur
suppression d’une case del d[cle]

longueur len(d)
parcours des clés d’un dictionnaire for x in d :

tester si une clé existe cle in d
tableau des clés d’un dictionnaire d.keys()

tableau des valeurs d’un dictionnaire d.values()
tableau des couples (clé,valeur) d’un dictionnaire d.items()

1.3 Remarques supplémentaires sur les dictionnaires en Python

— Il existe un transtypage des tableaux de couples vers les dictionnaires.
Par exemple, si on a un tableaut = [("a",1),("b",2),("c",3)],dict(t) créera le dictionnaire{'a': 1,
'b': 2, 'c': 3}.

— Les clés ne peuvent pas prendre des types mutables : les tuples sont autorisés, mais pas les tableaux.
— Les clés peuvent être autre chose que des string, et peuvent être de différents types, tout comme les valeurs.

1



2 Dictionnaires et tables de hachage

Pour implémenter dans la machine les dictionnaires, Python a recours à ce qu’on appelle des tables de hachage.

2.1 Spécification du problème à résoudre

Pour implémenter des dictionnaires, on voudrait :
— pouvoir ajouter une case ;
— pouvoir modifier une case ;
— pouvoir accéder à une case ;
— pouvoir supprimer une case.
— tout cela avec des clés qui ne sont pas des entiers.

2.2 Et dans le cas des tableaux?

Cette explication est valide dans le langage C, et tient, dans l’esprit, pour le langage Python.
L’implémentation des tableaux enmachine repose sur le fonctionnement de la mémoire. Chaque case mémoire d’une

machine dispose d’une adresse, qui est un entier (typiquement sur 64 bits).Un tableaut est alors en fait l’adressemémoire
d’une case particulière (par exemple #A024F3).
Pour obtenir le contenu d’une case du tableau, on demande alors t[0] : la machine comprend qu’elle doit donner le

contenu situé à la case dont l’adresse mémoire vaut #A024F3 + 0. De manière générale, si on demande t[k], la machine
renvoie le contenu situé à la case d’adresse #A024F3 + k. Pour connaître la case à manipuler, la machine fait une simple
addition : c’est ce qu’on appelle l’arithmétique des pointeurs.
Cette technique ne peut pas marcher directement dans le cas des dictionnaires, car il n’est pas possible de faire de

l’arithmétique avec tout type de clé possible et imaginable.

adresses mémoire #A024F3 #A024F4 #A024F5 #A024F6 #A024F7 #A024F8 #A024F9 #A024FA #A024FB #A024FC

contenu des cases 2 1 3 4 7 11 18 29 47 76

t

#A024F3

2.3 Tables de hachage

Pour implémenter un dictionnaire, une idée est alors de tout de même considérer un dictionnaire comme un tableau,
en construisant une fonction qui transforme les clés en entiers :

adresses mémoire #A024F3 #A024F4 #A024F5 #A024F6 #A024F7 #A024F8 #A024F9 #A024FA #A024FB #A024FC

clés "bob" "zoe" "ben" "ada" "moe" "lea" "kit" "bea" "sam" "pam"

valeurs 14 12 7 19 6 13 10 6 17 9

h

La fonction h est appelée fonction de hachage. Pour que nos calculs soient efficaces, on a besoin que le calcul d’une
image par h se fasse enO(1).

2



2.4 Difficultés autour des fonctions de hachage

Générer des fonctions de hachage est une tâche très difficile, car il faut remplir beaucoup de contraintes en le moins de
temps possible. En fait, c’est une tâche trop difficile, et les fonctions de hachage peuvent ne pas être injectives.

adresses mémoire #A024F3 #A024F4 #A024F5 #A024F6 #A024F7 #A024F8 #A024F9 #A024FA #A024FB #A024FC

clés "bob" "zoe" "ben" "ada" "moe" "lea" "kit" "bea" "sam" "pam"

valeurs 13

h

Dans ce cas, notre implémentation d’un dictionnaire est ratée : nos deux clés n’ont pas des résultats indépendants.

2.4.1 Première solution : avoir beaucoup plus de cases remplissables que de clés

On peut décorréler l’espace des clés et l’espace mémoire alloué au dictionnaire pour qu’ils n’aient pas la même taille.

adresses mémoire #A024F3 #A024F4 #A024F5 #A024F6 #A024F7 #A024F8 #A024F9 #A024FA #A024FB #A024FC

clés "ben" "ada" "moe" "lea" "kit"

valeurs 13 18 9 15 4

h

On diminue alors la probabilité de collisions. Mieux encore, si on a créé une collision, on peut, en peu de temps,
générer une nouvelle fonction de hachage qui n’aura pas de collision. En notant n le nombre de clés et m le nombre de
cases mémoire réservées, on appelle facteur de charge le rapport n/m. Plus le facteur de charge est important, plus la
mémoire est utilisée efficacement, mais plus il y a de risques de collision. En pratique, on choisit généralement un facteur
de charge de „ 0.75.

2.4.2 Deuxième solution : stocker des listes

Plutôt que de ne stocker qu’une seule valeur par case, on peut stocker une liste de valeurs : s’il y a collision, on a alors
les différents résultats possibles.

adresses mémoire #A024F3 #A024F4 #A024F5 #A024F6 #A024F7 #A024F8 #A024F9 #A024FA #A024FB #A024FC

clés "bob" "zoe" "ben" "ada" "moe" "lea" "kit" "bea" "sam" "pam"

valeurs
[("ben",13)

,("bea",17)]

h

3



On peut se dire qu’on a déplacé le problème de l’implémentation des dictionnaires un cran plus bas. L’avantage est
que, si notre fonction de hachage n’est pas trop mauvaise, on a considérablement réduit la taille des nouvelles tables de
hachage à construire.

2.4.3 En pratique

En pratique, les deux solutions sont combinées : on a à la fois plus d’espace que nécessaire, et de la gestion de collision
par sous-tables de hachage.
Concernant les fonctionnalités à implémenter :
— l’ajout de cases à un dictionnaire se fait en ajoutant des cases mémoire allouées, et en modifiant la fonction de

hachage ;
— la suppression de cases se fait en modifiant la fonction de hachage. Si on a alloué « trop » d’espace mémoire, on

peut aussi désallouer de la mémoire. Il faut cependant faire attention à des phénomènes de seuil.

4


	Dictionnaires en Python
	Vocabulaire
	Syntaxe en Python
	Remarques supplémentaires sur les dictionnaires en Python

	Dictionnaires et tables de hachage
	Spécification du problème à résoudre
	Et dans le cas des tableaux ?
	Tables de hachage
	Difficultés autour des fonctions de hachage
	Première solution : avoir beaucoup plus de cases remplissables que de clés
	Deuxième solution : stocker des listes
	En pratique



