CPGE 2éme année — Louis-le-Grand — Pierre BEAUR

Preuves en informatique

1 Correction et terminaison

Définition 1

La spécification d’un algorithme consiste a préciser les entrées et les sorties attendues d’un algorithme.

Une spécification-jouet d’un algorithme simple :

Entrée : un entier naturel positif n € N
Sortie : un diviseur pair de n §’il existe, —1 sinon.

Soit A un algorithme.

— la correction partielle de A signifie que lorsque A termine, alors il renvoie ce qui est attendu de lui;

— la terminaison de A signifie que A termine sur toute entrée;

\ — la correction de A signifie la correction partielle et la terminaison de A.

Reprenons notre spécification précédente :

def ppdp(n): \ def ppdp(n):
d=2 return 2
while n¥%d '= O:
d += 2 La fonction de droite termine, mais n’est pas partielle-
\ return d ment correcte; la fonction de gauche est partiellement

correcte, mais ne termine pas sur toute entrée.

On parle aussi de précondition (qu’a-t-on en entrée ?) et de postcondition (qu'exige-t-on de la sortie ?). Il s’agit d’'une
interprétation contractuelle de I'informatique : si 'entrée vérifie la précondition, alors la sortie doit vérifier la postcondi-
tion.

1.1 Preuves de terminaison

Pour prouver la terminaison d’un algorithme, il existe deux types d’arguments :
— Talgorithme est exclusivement composé de boucles finies (= boucles « pour »);

— un argument par variant.

Techniquement, en Python, il est possible de créer des boucles f or infinies; il s’agit moins d’une difficulté théorique
que d’un défaut du langage Python.

Pour construire un argument par variant, il faut exhiber une grandeur qui dépend des variables de I'algorithme, qui est
enticre, qui est positive, et qui décroit strictement.

Techniquement, on pourrait généraliser les variants aux ordres bien fondés (voir ’hydre de Kirby-Paris).

1.2 Preuves de correction partielle

Avant de commencer une preuve de correction partielle, on commence par établir la spécification souhaitée de I'algo-
rithme, afin de savoir dans quelle direction aller.

Sivotre programme ne fait aucune itération (pas de boucle, pas de récursivité, ...), on analysera le programme a la main.

Des qu’il y aune boucle ou de la récursivité, la principale technique d’analyse est la méthode de 'invariant. Un invariant
est une propriété mathématique, dépendante des variables du programme, qui :

— est vraie avant le début de 'itération;

— est préservée 2 la fin d’une itération.

Ici, notre spécification est que l'entrée N est un en- \
N def somme_carres(N):
tier positif, et que la sortie est Z k2, s =0
k=0 for i in range(N+1):
i S += i**2
Ici, on choisit comme propriété : « s = Z E? ». k return s
k=0

On cherche 2 montrer que notre propriété est bien un invariant.

L’initialisation de notre propriété est un peu délicate : que vaut i avant le début de la boucle ? Trois solutions plus
ou moins convaincantes s’offrent 4 vous.

— considérer que i n’existe pas, donc la somme est est une somme vide;
— considérer quei = -1, donc la somme est est une somme vide;

— réécrire le programme avec une boucle while, et potentiellement changer d’invariant.
i
. 7 . s 1.7 \ 5 e . . 2
Montrons maintenant la préservation notre propriété : supposons, a la fin d’une itération, que s = k*. Mon-
k=0

i
trons, 4 la fin de l'itération suivante, qu'on a toujours s = Z k2. Pour ce faire, on va distinguer nos variables entre

k=0
lancienne itération et la nouvelle itération : s, et i, désignent les valeurs des variables dans I'itération précédente,

tandis que s,, et i,, désignent les valeurs des variables dans I'itération actuelle. En particulier, ona i, = i, + 1.
On remarque ensuite que :

.2
S, =8, +1;,

=) K+ (1 + 1)
k=0

ig+1

:ZkQZIanQ
k=0 k=0

in
Donconabiens, = Z k%;la propriété est bien préservée par I'itération de la boucle. Donc la propriété est bien
. . k:0
un invariant.
N
En conclusion, a la fin du dernier passage de boucle, onas = Z k?; donc notre programme vérifie bien la

k=0
spécification souhaitée.

2 Complexité(s)

Définition 3 : complexités temporelles

Soit A un algorithme. La complexité temporelle de A dans le pire cas est la fonction C'y : N — N qui, 2 un entier
n, associe le plus grand nombre d’opérations élémentaires nécessaire pour que A traite une entrée de taille n.

\La complexité moyenne est la moyenne des nombres d’'opérations pour toutes les entrées d'une méme taille.

Deux notions sont laissées volontairement floues dans ce contexte, « opérations élémentaires » et « taille » : ces
notions dépendent du contexte. Par exemple, en général, on traite les opérations arithmétiques comme étant élé-
mentaires; mais dans le cadre de questions arithmétiques (comment encoder 'addition en machine, par exemple),
ces opérations ne sont plus élémentaires. De méme, la taille dépend de ce qu'on traite. On considere par exemple
généralement que les entiers sont de taille constante, mais lorsqu’on s’intéresse aux problémes arithmétiques, ce
n'est plus le cas : un entier 1 est de taille log(n).

Définition 4 : complexité spatiale

Soit A un algorithme. La complexité spatiale de A dans le pire cas est la fonction C'y : N — N qui, 4 un entier n,
stocie la taille mémoire de travail maximale nécessaire pour que A traite une entrée de taille 7.

Considérons les deux exemples suivants. Dans exemple,
Ientrée est une matrice, donc I'entrée est potentiellement de
taille quadratique : pourtant, on ne fait que renvoyer 1. On \
n’a pas eu besoin d’accéder et surtout de stocker temporai- et onplieluainien) ¢

. . P return 1
rement les valeurs dans matrice pour travailler : on n’a pas
besoin de mémoire pour exécuter la fonction.

def exemple2(m): \
for i in range(len(m)):
for j in range(len(m[0])):
m[i] [§] += 1

Dans le second exemple, il peut y avoir deux interprétations.
Selon la premiére, on a besoin d’avoir la place pour faire les
additions, et la place de stocker la matrice : on obtient une

com}')le/mte en O(|m]). Selon la secondF:, les cases mémoires return m
modifiées ne sont pas des cases de travail, car elles sont four-

nies par I'utilisateur : donc seule I'addition compte, ce qui

donne une complexité en O(1).

2.1 Etablir la complexité temporelle : cas usuel des boucles « pour »

Lorsqu’on traite des boucles « pour » bornées, il est généralement suffisant de connaitre le nombre d’'opérations par
passage de boucle, et le nombre total de passages de boucle.

Déterminons, hors de tout contexte, la complexité du programme suivant.

Observons les variables utilisées : s for i in range(n):
10 for r in range(b+1):
— obj semble étre une matrice; if obj[i] [0]<=r:
— Taussi: 12 T[i+1] [r]=max(T[i] [r],T[i] [r-obj[i] [0]]+obj[i][1])
> 13 else:
— netb sont des entiers. " T[i+1] [x]=T[i] [r]

On peut alors faire 'analyse suivante :
« Les opérations faites entre la ligne 11 et la ligne 14 sont en temps constant (affectations, calcul d’un max, opéra-
tions arithmétiques). Donc la boucle débutant ligne 10 fait O(b) passages de boucle, chacun en O(1); donc cette

boucle esten O(b). Donc la boucle débutant ligne 9 fait O(n) passages de boucle, chacun en O(b); au total, notre
programme sexécute en au plus O(n x b) opérations élémentaires. »

2.2 Complexité temporelle par variant

Une autre technique consiste 4 attacher notre complexité Iétude d’un variant de boucle.

De nouveau, cherchons 4 examiner la complexité de ce morceau de code sans comprendre ce qu’il fait précisément.

Ici, on observe que k est un variant pour les deux boucles :

k=n-1 7 A . \
j b k décroit strictement & chaque passage de des deux boucles.
. while r>0 and k>=0 and T[k+1][r]!=0: On peut alors faire 'analyse suivante :
o while x>0 and T[k+1][r]==T[k][r]: « On observe qu’a chaque passage de la boucle débutant
w0 k-=1 ligne 9 et chaque passage de la boucle débutant ligne 8, k
u Slk]=1 décroit strictement. Les conditions de sortie de ces boucles
12 r=r-obj [k] [0] 5 . L. .
. =1 font qu'on en sort si k est négatif (strictement ou non selon

la boucle); donc on peut décroitre k au plus n-1 fois.

Soit p le nombre de passages de boucles de la boucle 8, et ¢; le nombre de passages de la boucle 9 lors de la i-¢me
itération de la boucle 8. Chaque étape comptée par g; correspond a des décrémentations de k. Notre programme
effectue donc au plus :

p

Z(C]H‘O(l)) :Z%‘ (p)
= 6(71

+0
i=1
) + O(n) = O(n) opérations élémentaires dans le pire cas ».

2.3 Complexité par équation de récurrence

Ce cas sapplique principalement au cas des fonctions récursives. Il sagit détablir une (in)équation de récurrence a par-
tir du schéma de récursion utilisé par le programme. La difficulté consiste principalement 4 résoudre ladite (in)équation.

Reprenons Iéquation de récurrence de la complexité du tri fusion.

C(n) =2C (g) +n

On remarque, en remplagant I'occurrence de C' a droite par lui-méme, qu’on obtient les égalités successives sui-
vantes :

C(n)=2C (g) +n

2(20(%)+g>+n:40<%>+2n

= 8C (g) + 3n

n
De maniére générale, on montre par récurrence que C(n) = 2~C (—k) +kn.Enprenantk ~ log(n), on obtient

alors que C'(n) = nlog(n) + nC(1) = O(nlog(n)).

	Correction et terminaison
	Preuves de terminaison
	Preuves de correction partielle

	Complexité(s)
	Établir la complexité temporelle : cas usuel des boucles « pour »
	Complexité temporelle par variant
	Complexité par équation de récurrence

