
CPGE 2ème année – Louis-le-Grand – Pierre BÉAUR

Preuves en informatique Cours

03

1 Correction et terminaison

Définition 1

La spécification d’un algorithme consiste à préciser les entrées et les sorties attendues d’un algorithme.

Une spécification-jouet d’un algorithme simple :
Entrée : un entier naturel positif n P N
Sortie : un diviseur pair de n s’il existe,´1 sinon.

Définition 2

SoitA un algorithme.
— la correction partielle deA signifie que lorsqueA termine, alors il renvoie ce qui est attendu de lui ;
— la terminaison deA signifie queA termine sur toute entrée ;
— la correction deA signifie la correction partielle et la terminaison deA.

Reprenons notre spécification précédente :

def ppdp(n):
d = 2
while n%d != 0:

d += 2
return d

def ppdp(n):
return 2

La fonction de droite termine, mais n’est pas partielle-
ment correcte ; la fonction de gauche est partiellement
correcte, mais ne termine pas sur toute entrée.

On parle aussi de précondition (qu’a-t-on en entrée?) et de postcondition (qu’exige-t-on de la sortie?). Il s’agit d’une
interprétation contractuelle de l’informatique : si l’entrée vérifie la précondition, alors la sortie doit vérifier la postcondi-
tion.

1.1 Preuves de terminaison

Pour prouver la terminaison d’un algorithme, il existe deux types d’arguments :
— l’algorithme est exclusivement composé de boucles finies (= boucles « pour ») ;
— un argument par variant.

Techniquement, enPython, il est possible de créer des bouclesfor infinies ; il s’agitmoins d’unedifficulté théorique
que d’un défaut du langage Python.

Pour construire un argument par variant, il faut exhiber une grandeur qui dépend des variables de l’algorithme, qui est
entière, qui est positive, et qui décroît strictement.

Techniquement, on pourrait généraliser les variants aux ordres bien fondés (voir l’hydre de Kirby-Paris).

1

1.2 Preuves de correction partielle

Avant de commencer une preuve de correction partielle, on commence par établir la spécification souhaitée de l’algo-
rithme, afin de savoir dans quelle direction aller.

Si votre programme ne fait aucune itération (pas de boucle, pas de récursivité, …), on analysera le programme à lamain.

Dès qu’il y a une boucle oude la récursivité, la principale technique d’analyse est laméthode de l’invariant.Un invariant
est une propriété mathématique, dépendante des variables du programme, qui :
— est vraie avant le début de l’itération;
— est préservée à la fin d’une itération.

Ici, notre spécification est que l’entrée N est un en-

tier positif, et que la sortie est
N

ÿ

k=0

k2.

Ici, on choisit comme propriété : « s =
i

ÿ

k=0

k2 ».

def somme_carres(N):
s = 0
for i in range(N+1):

s += i**2
return s

On cherche à montrer que notre propriété est bien un invariant.

L’initialisation de notre propriété est un peu délicate : que vaut i avant le début de la boucle? Trois solutions plus
ou moins convaincantes s’offrent à vous.
— considérer que i n’existe pas, donc la somme est est une somme vide ;
— considérer que i = -1, donc la somme est est une somme vide ;
— réécrire le programme avec une boucle while, et potentiellement changer d’invariant.

Montrons maintenant la préservation notre propriété : supposons, à la fin d’une itération, que s =
i

ÿ

k=0

k2. Mon-

trons, à la fin de l’itération suivante, qu’on a toujours s=
i

ÿ

k=0

k2. Pour ce faire, on va distinguer nos variables entre

l’ancienne itération et la nouvelle itération : sa et ia désignent les valeurs des variables dans l’itération précédente,
tandis que sn et in désignent les valeurs des variables dans l’itération actuelle. En particulier, on a in = ia + 1.
On remarque ensuite que :

sn = sa + i2
n

=
ia
ÿ

k=0

k2 + (ia + 1)2

=
ia+1
ÿ

k=0

k2 =
in
ÿ

k=0

k2

Donc on a bien sn =
in
ÿ

k=0

k2 ; la propriété est bien préservée par l’itération de la boucle. Donc la propriété est bien

un invariant.

En conclusion, à la fin du dernier passage de boucle, on a s =
N
ÿ

k=0

k2 ; donc notre programme vérifie bien la

spécification souhaitée.

2

2 Complexité(s)

Définition 3 : complexités temporelles

SoitA un algorithme. La complexité temporelle deA dans le pire cas est la fonctionCA : N Ñ N qui, à un entier
n, associe le plus grand nombre d’opérations élémentaires nécessaire pour queA traite une entrée de taille n.

La complexité moyenne est la moyenne des nombres d’opérations pour toutes les entrées d’une même taille.

Deux notions sont laissées volontairement floues dans ce contexte, « opérations élémentaires » et « taille » : ces
notions dépendent du contexte. Par exemple, en général, on traite les opérations arithmétiques comme étant élé-
mentaires ; mais dans le cadre de questions arithmétiques (comment encoder l’addition en machine, par exemple),
ces opérations ne sont plus élémentaires. De même, la taille dépend de ce qu’on traite. On considère par exemple
généralement que les entiers sont de taille constante, mais lorsqu’on s’intéresse aux problèmes arithmétiques, ce
n’est plus le cas : un entier n est de taille log(n).

Définition 4 : complexité spatiale

SoitA un algorithme. La complexité spatiale deA dans le pire cas est la fonction C̃A : N Ñ N qui, à un entier n,
associe la taille mémoire de travail maximale nécessaire pour queA traite une entrée de taille n.

Considérons les deux exemples suivants. Dans exemple,
l’entrée est une matrice, donc l’entrée est potentiellement de
taille quadratique : pourtant, on ne fait que renvoyer 1. On
n’a pas eu besoin d’accéder et surtout de stocker temporai-
rement les valeurs dans matrice pour travailler : on n’a pas
besoin de mémoire pour exécuter la fonction.

Dans le second exemple, il peut y avoir deux interprétations.
Selon la première, on a besoin d’avoir la place pour faire les
additions, et la place de stocker la matrice : on obtient une
complexité enO(|m|). Selon la seconde, les cases mémoires
modifiées ne sont pas des cases de travail, car elles sont four-
nies par l’utilisateur : donc seule l’addition compte, ce qui
donne une complexité enO(1).

def exemple(matrice):
return 1

def exemple2(m):
for i in range(len(m)):

for j in range(len(m[0])):
m[i][j] += 1

return m

2.1 Établir la complexité temporelle : cas usuel des boucles « pour »

Lorsqu’on traite des boucles « pour » bornées, il est généralement suffisant de connaître le nombre d’opérations par
passage de boucle, et le nombre total de passages de boucle.

Déterminons, hors de tout contexte, la complexité du programme suivant.

Observons les variables utilisées :
— obj semble être une matrice ;
— T aussi ;
— n et b sont des entiers.

On peut alors faire l’analyse suivante :
« Les opérations faites entre la ligne 11 et la ligne 14 sont en temps constant (affectations, calcul d’un max, opéra-
tions arithmétiques). Donc la boucle débutant ligne 10 faitO(b) passages de boucle, chacun enO(1) ; donc cette

3

boucle est enO(b). Donc la boucle débutant ligne 9 faitO(n) passages de boucle, chacun enO(b) ; au total, notre
programme s’exécute en au plusO(n ˆ b) opérations élémentaires. »

2.2 Complexité temporelle par variant

Une autre technique consiste à attacher notre complexité à l’étude d’un variant de boucle.

De nouveau, cherchons à examiner la complexité de cemorceau de code sans comprendre ce qu’il fait précisément.

Ici, on observe que k est un variant pour les deux boucles :
k décroît strictement à chaque passage de des deux boucles.
On peut alors faire l’analyse suivante :
« On observe qu’à chaque passage de la boucle débutant
ligne 9 et chaque passage de la boucle débutant ligne 8, k
décroît strictement. Les conditions de sortie de ces boucles
font qu’on en sort si k est négatif (strictement ou non selon
la boucle) ; donc on peut décroître k au plus n-1 fois.

Soit p le nombre de passages de boucles de la boucle 8, et qi le nombre de passages de la boucle 9 lors de la i-ème
itération de la boucle 8. Chaque étape comptée par qi correspond à des décrémentations de k. Notre programme
effectue donc au plus :

p
ÿ

i=1

(qi +O(1)) =
p

ÿ

i=1

qi +O(p)

= O(n) +O(n) = O(n) opérations élémentaires dans le pire cas ».

2.3 Complexité par équation de récurrence

Ce cas s’applique principalement au cas des fonctions récursives. Il s’agit d’établir une (in)équation de récurrence à par-
tir du schéma de récursion utilisé par le programme. La difficulté consiste principalement à résoudre ladite (in)équation.

Reprenons l’équation de récurrence de la complexité du tri fusion.

C(n) = 2C
(n
2

)
+ n

On remarque, en remplaçant l’occurrence de C à droite par lui-même, qu’on obtient les égalités successives sui-
vantes :

C(n) = 2C
(n
2

)
+ n

= 2
(
2C

(n
4

)
+

n

2

)
+ n = 4C

(n
4

)
+ 2n

= 8C
(n
8

)
+ 3n

Demanière générale, onmontre par récurrence queC(n) = 2kC
(n

2k

)
+kn. En prenant k » log(n), on obtient

alors queC(n) = n log(n) + nC(1) = O(n log(n)).

4

	Correction et terminaison
	Preuves de terminaison
	Preuves de correction partielle

	Complexité(s)
	Établir la complexité temporelle : cas usuel des boucles « pour »
	Complexité temporelle par variant
	Complexité par équation de récurrence

