CPGE 2éme année — Louis-le-Grand — Pierre BEAUR

Programmation dynamique

1 Stratégies algorithmiques

1.1 Définitions et exemples

Pour rappel, en informatique, on distingue I'algorithme (conception théorique et indépendante des langages) du pro-
gramme (conception pratique rattachée a un langage précis). Dans ce chapitre, on va traiter d’'une stratégie algorithmique.

Définition 1 : stratégie algorithmique

Une stratégie algorithmique est une méthode de conception d’un algorithme.

II faut distinguer les stratégies algorithmiques des méthodes de programmation, propres a 'implémentation d’un al-
gorithme. Il existe de nombreuses stratégies algorithmiques, dont certaines déja vues en cours : diviser-pour-régner et
algorithme glouton.

Pour déterminer le maximum d’un tableau, on peut prendre une approche diviser-pour-régner.

def max_rec(tab): 4‘\\ ~\\
if len(tab) == 1: def max_non_rec(tab):
return tabl[0] a_traiter = [(0,len(tab)-1)]
n = len(tab) max_act = tabl[0]
ml = max_rec(tab[n//2:]) while a_traiter != []:
m2 = max_rec(tabl[:n//2]) a,b = a_traiter.pop()
return max(ml,m2) if a ==
\\‘, max_act = max(max_act,tabla])
else:

Le code ci-dessus est récursif, celui de droite
milieu = (a+b)//2

a_traiter.append((a,milieu))
a_traiter.append((milieu+1,b))

ne l'est pas. Les deux programmes font tou-
tefois appel a la méme stratégie diviser-pour-

régner : la stratégie algorithmique est la méme, return max act
mais la technique de programmation est diffé- \ -

rente.

Pour rappel, les deux stratégies connues jusqu’ici sont les suivantes :

Définition 2 : diviser-pour-régner Définition 3 : stratégie gloutonne

Pour résoudre un probléme, on le divise en sous- Pour résoudre un probleme d'optimisation, on

problemes, qu'on résout chacun indépendamment, construit une solution petit a petit en prenant
pour remonter a la solution du gros probleme. a chaque étape ce qui est le mieux localement.

Il est important de noter que ces définitions ne sont pas des définitions formelles.
La programmation dynamique est une « généralisation » du diviser-pour-régner :

Définition 4 : programmation dynamique

Pour résoudre un probleme, on le divise en sous-problemes, qui ne sont pas forcément indépendants les uns des
autres, pour remonter a la solution du gros probleme.

2 Un exemple : le probléme du rendu de monnaie

On consideére un systeme monétaire, par exemple 'euro : il y a des picces ou billets de 1, 2, 5, 10, 20, 50, 100 et 200 €.
M. Sogé, banquier de son ¢état, doit faire I'appoint pour rendre une valeur de 53€. Comment peut faire M. Sogé pour
faire l'appoint en utilisant le moins d’unités possibles ?

Définition S

Le probléeme du rendu de monnaie est le probleme suivant :

Donnée : une liste finie dentiers C' = [cg, ¢4, . . . , ¢¢j—1] et un entier N;
IC|-1 IC|-1
Question : trouver des entiers (ak)0<k<|c|_1 telsque N = 2 aicr = N, desorte que 2 ay, soit minimale.
k=0 k=0

Par souci de simplicité, on supposera toujoursici que ¢y = 1, donc que toutentier N dispose d’une décomposition.
p > pp queco > q p p

2.1 Une premiére approche par algorithme glouton

Lalgorithme glouton consiste ici a construire la solution en choisissant au fur et & mesure la « plus grosse piece » qui
puisse encore passer.

Données : C' une liste d’entiers, N un entier
res « tableau rempli de 0 de longueur |C|
r— N
tant quer # 0:
trouver ¢; € C' maximal tel que ¢; < r
L resli] < resfi] +1,r < r —g¢
retourner res

algorithme ci-dessus est de complexité O(|C| x K),
ou K estle nombre de picces utilisées dans la solution
optimale cherchée; Ialgorithme a droite est de com-
plexité¢ O(|C]), ou O(log(|C|) x |C|) s’il faut trier C

au préalable.

Lalgorithme a gauche permet de trouver une solution
gloutonne au probleme du rendu de monnaie. II est
possible d’améliorer considérablement Ialgorithme en
calculant directement res[i] a l'aide d’une division eu-
clidienne.

Données : C' triée, N un entier
res < tableau rempli de 0 de longueur |C|
r— N
pouride|C|-140:
resli] «—r//c;
L r < r mod ¢;
retourner res

M. Lloyds, banquier britannique, observe les formidables performances de I'algorithme de M. Sogé : il veut I'utiliser
lui aussi! Au Royaume-Uni, le syst¢éme monétaire est Iégerement différent : il y a des pieces de 1, 2, 5, 10, 20, 25, 50, 100

et 200 £. Un jour, il doit rendre une somme de 41£ : patatras!

Il existe des listes C' telles que I'algorithme glouton ne donne pas la solution optimale du rendu de monnaie.

Démonstration.

Lalgorithme glouton donne 41 = 25 + 10 + 5 + 1; pourtant il y a la solution 41 = 20 + 20 + 1 (quiest la

solution optimale).

Plus précisément, certains systémes monétaires (la plupart) font que I'algorithme glouton donne la solution optimale :

un tel systeme est appelé canonique. Une question importante devient alors la canonicité d’un systeme monétaire. 11
existe toute une théorie autour des sytemes canoniques, dont on peut retenir les principes suivants :

— il n’existe pas de caractérisation mathématique évidente des systemes canoniques qui soit indépendante de la taille

du systeme;

— il existe des algorithmes permettant de savoir si un systeme est canonique (Kozen-Zaks);

— il existe des caractérisations dans le cas de petits systemes (jusqu’a 6 picces).

2.2 Une seconde approche : mémoisation et programmation dynamique

Pour résoudre le probleme du rendu de monnaie dans tout systéme monétaire, I'idée consiste a construire une solution

pour N a partir de solutions pour les entiers plus petits.

2.2.1 Approche top-down

Prenons un systéme non-canonique C' = [1, 4, 9]. Pour déterminer une décomposition de NV, I'idée est alors de sup-
poser avoir déja une décompositionde N — 1, N — 4 et N — 9. On prend la plus petite de ces trois décompositions : on

en déduit une décomposition de V.

La programmation dynamique prend ici la
forme d’une simple récursivité. Un point cru-
cial est toutefois que ce programme est parti-
culi¢rement inefficace en temps. La raison est
qu'on fait appel 2 rendu_monnaie de nom-
breuses fois sur des valeurs de [V identiques.
Question. Dessiner l'arbre d’appels récursifs
pourC' = [1,4,9] et N = 12.

def rendu_monnaie(C,N): ‘\\
if N ==
return O
R =1
for in range(len(C)):
if N >= c[il:
R.append (rendu_monnaie(C,N-c[i]))

\ return min(R)+1

Pour éviter ces appels redondants, on met alors en place la mémoisation : on crée un tableau pour stocker les valeurs

calculées.

def rendu_monnaie(C,N): ‘\\
tab = [-1 for n in range(N+1)]
tab[0] = 0
def aux(k):
if tablk] !'= -1:
return tabl[k]
R = []
for c¢c in C:
if k-c >= 0:
R.append (aux (k-c))
tab[k] = min(R)+1
return tab[k]

\ return aux(N)

Ici, tab est ce qui nous permet de faire la mémoisation. La fonc-
tion aux, définie a 'intérieur de notre fonction principale, est
une fonction auxiliaire : elle prend en parametre k, qui sera notre
valeur intermédiaire dont on cherche une solution. Si tab [k]
est déja remplie, alors il n’y a pas besoin de la calculer; sinon, on
fait les appels récursifs nécessaires.

Pour déterminer la complexité de notre programme, on dis-
tingue les appels 4 aux qui remplissent une case de ceux ot la
case est déja remplie :

— remplir la case : un tel appel a lieu une seule fois pour tout

ke [0, N],etesten O(|C|);

— case déja remplie : un tel appel a lieu au plus |C] fois, et

esten O(1).

Au total, on atteint donc une complexité temporelle en O(|C| x N).

2.2.2 Approche bottom-up

Dans l'approche précédente, on est parti de NV,
et on est descendu dans les appels récursifs. Mais
quitte a remplir un grand tableau, on peut aussi
le faire directement, en partant des petites va-
leurs faciles a calculer, et en montant dans le ta-
bleau : c’est l'approche bottom-up, par opposi-
tion a la top-down.

Les boucles imbriquées donnent une complexité

temporelle en O(|C] x N).

def rendu_monnaie(C,N): A‘\\

tab = [-1 for n in range(N+1)]
tab[0] = 0O
for k in range(1,N+1):

m = N+1

for ¢ in C:

if k-c >= 0 and tabl[k-c]+1 < m:
m = tabl[k-c]+1
tablk] = m

K return tabl[N]

On remarque qu’il n’y a pas de différence de complexité temporelle entre approches top-down et bottom-up.

3

3 Un autre exemple : distance dans un graphe orienté

Considérons un graphe orienté G : on le représentera ici
sous forme d’une matrice d’adjacence M_G. Par exemple,
M_G[0][1] = 4. S’il n’y a pas daréte, on dira que le

poids est infini.

En Python, on utilisera la notation M_G[1][0]=
float('inf'), qui représente +00 (et est compatible

avec la comparaison et les opérations arithmétiques).

Définition 7

Le probléme de la distance entre deux sommets dans un graphe est le probléme suivant :

Donnée : un graphe G' et deux sommets s et ¢
Question : trouver un chemin de s a ¢ de poids minimal.

3.1 Algorithme de Dijsktra

Lalgorithme de Dijkstra est un algorithme ef-
ficace, qui fonctionne sous ’hypothese que
les arétes sont de poids positifs. Il s’agit d’'un
algorithme glouton : pour choisir le nouveau
sommet © 4 étudier, on prend le sommet le
plus proche non encore traité.

La complexité de I'algorithme de Dijkstra dé-
pend de I'implémentation des objets, et en
particulier de Iétape d’extraction (qui permet
d’obtenir u). En utilisant des tableaux, cette
extraction se fait en O(n) avec n le nombre
de sommets; au total, cet algorithme est en
complexité temporelle O(n?), et complexité

spatiale O(n).

3.2 Algorithme de Bellman-Ford

L’un des problemes de Dijkstra est qu’il ne fonctionne
pas nécessairement correctement dansle casotril yaun
cycle de poids négatif : il ne détectera méme pas forcé-

ment ce cycle.

Lalgorithme de Bellman-Ford calcule un ta-
bleau dist tel que dist|u] contiendra, 2 1a fin,
la longueur du plus petit chemin de s a u.
Le sous-probleme étudié est le calcul des plus
courts chemins depuis s vers tout sommet ©
en utilisant & arétes, pour £ allant de 0 (avant
le premier passage de boucle) jusqua n — 1.
S’il n’y a pas de cycle négatif, le plus court che-
min sera de longueur au plus n — 1.

Données : M, sett

n < nombre de sommets

pred < tableau rempli de 0 de longueur n

dist < tableau rempli de +00 de longueur n; dist[s] < 0
S« sommets du graphe

tant que S 7 est pas vide :
u < élément de S dont la dist est minimale
retirer u de S
pour tout sommet v :
d — dist[u] + M¢[u][v]
sid < dist[v]:
dist[v] < d
L predv] «— u

retourner dist(t] et le chemin de s a t a partir de pred

-5
O—=—a__ o

2

Données : Mg, sett

n < nombre de sommets

pred < tableau rempli de 0 de longueur n

dist < tableau rempli de +-00 de longueur n; dist[s] < 0

pourkdelan —1:

pour tout couple de sommets (u, v) :
d — distlu] + M¢[u][v]

sid < dist[v] :
| distlv] «— d,pred[v] < u

retourner dist(t] et le chemin de s a t a partir de pred

On peut modifier I'algorithme pour détecter les cycles négatifs : si, 2 la fin, il existe un couple (u, v) tel que dist[v] >
dist[u] + Mg[u][v], cest que le graphe posséde un cycle négatif.
algorithme de Bellman-Ford est de complexité temporelle O(n?) (et spatiale O(n)).

3.3 Algorithme de Floyd-Warshall

On s’intéresse désormais 4 une version légerement différente du probleme précédent : peut-on donner la distance de
tout sommet vers tout sommet ?

Définition 8§

Le probléme de la distance entre tous sommets dans un graphe est le probleme suivant :

Donnée : un graphe G
Question : calculer le tableau dist tel que dist[u][v] est la distance de u 2 v dans G.

Cette fois, le découpage en sous-probleme est légerement différent : il s’agira du calcul de la distance depuis tout sommet
u vers tout sommet v, en se contraignant a utiliser comme sommets intermédiaires les sommets 0 2 .

Lalgorithme de Floyd-Warshall est de complexité tempo-
relle O(n?), et de complexité spatiale O(n?).

Données : Mg

Lalgorithme de Floyd-Warshall détecte les cycles négatifs :
n < nombre de sommets

on peut vérifier, 4 la fin, s’il y a une valeur strictement né-

gative sur la diagonale de dist. dist™") < matricen x 1 qui est une copie de M

pourkdeOan —1:

On peut alléger ce code, en remarquant que les copies de dist®) copie de distF=1)

dist sont inutiles, et qu'on peut travailler dans une seule pour tout couple de sommets (u,v) :
matrice quon met a jour. On remarque en effet que s’il d — dist* V[u][k] + dist*V[k][v]
n’y a pas de cycle négatif, il n’y a jamais, lors de la boucle sid < dist® [u][v] =

k, de mise 2 jour daucun dist™®[u][k] ou dist® [k][v], | distP[u][v] — d

donc le calcul de d est correct méme sans recopie de dist. — . .
retourner dist(" 1)

S’il y a des cycles de poids négatifs, il y aura des problemes
de mise a jour, mais on détectera la présence de cycles né-

gatifs.
3.4 Codes entiers
def dijkstra(M_G,s,t) : ‘\\
n = len(M_G)
pred = list(range(n))
def extraire min(1,d): ‘\\ dist = n*[float('inf')]
ind = 0 dist[s] = O
for i in range(len(l)): sommets = list(range(n))
if d[1[i]] < d[1[ind]]: while sommets != []:
ind = i u,sommets = extraire_min(sommets,dist)
return 1[ind],1[:ind]+1[ind+1:] for i in range(n):
\\; d = dist[ul+M_G[u] [i]

if d < dist[i]:
pred[i] ,dist[i] = u,d
chemin,som = [t],t
while som != s:
som = pred[som]
chemin = [som]+chemin
\\‘ return dist[t],chemin

Une légere différence par rapport a lalgorithme
donné est I'initialisation de pred : dans ce code, on
a préféré dire que par défaut, un sommet est son
propre prédécesseur.

def bellman_ford(M_G,s,t):
n = len(M_G)
pred = list(range(n))
dist = n*[float('inf')]
dist[s] = O
for k in range(n):
for u in range(n):
for v in range(n):
d = dist[ul+M_G[u] [v]
if d < dist[v]:
dist[v],pred[v] = d,u
chemin,som = [t],t
while som != s:
som = pred[som]
chemin = [som]+chemin
\\‘ return dist[t],chemin

from copy import deepcopy

def floyd_warshall(M_G):
n = len(M_G)
dist = deepcopy (M_G)
for k in range(n):
for u in range(n):
for v in range(n):
d = dist[ul [k] + dist([k][v]
if d < dist[u] [v]:
dist[ul [v] = d

\\‘ return dist

	Stratégies algorithmiques
	Définitions et exemples

	Un exemple : le problème du rendu de monnaie
	Une première approche par algorithme glouton
	Une seconde approche : mémoïsation et programmation dynamique
	Approche top-down
	Approche bottom-up

	Un autre exemple : distance dans un graphe orienté
	Algorithme de Dijsktra
	Algorithme de Bellman-Ford
	Algorithme de Floyd-Warshall
	Codes entiers

