
CPGE 2ème année – Louis-le-Grand – Pierre BÉAUR

Programmation dynamique Cours

02

1 Stratégies algorithmiques

1.1 Définitions et exemples

Pour rappel, en informatique, on distingue l’algorithme (conception théorique et indépendante des langages) du pro-
gramme (conceptionpratique rattachée à un langage précis).Dans ce chapitre, on va traiter d’une stratégie algorithmique.

Définition 1 : stratégie algorithmique

Une stratégie algorithmique est une méthode de conception d’un algorithme.

Il faut distinguer les stratégies algorithmiques des méthodes de programmation, propres à l’implémentation d’un al-
gorithme. Il existe de nombreuses stratégies algorithmiques, dont certaines déjà vues en cours : diviser-pour-régner et
algorithme glouton.

Pour déterminer le maximum d’un tableau, on peut prendre une approche diviser-pour-régner.

def max_rec(tab):
if len(tab) == 1:

return tab[0]
n = len(tab)
m1 = max_rec(tab[n//2:])
m2 = max_rec(tab[:n//2])
return max(m1,m2)

Le code ci-dessus est récursif, celui de droite
ne l’est pas. Les deux programmes font tou-
tefois appel à la même stratégie diviser-pour-
régner : la stratégie algorithmique est lamême,
mais la technique de programmation est diffé-
rente.

def max_non_rec(tab):
a_traiter = [(0,len(tab)-1)]
max_act = tab[0]
while a_traiter != []:

a,b = a_traiter.pop()
if a == b:

max_act = max(max_act,tab[a])
else:

milieu = (a+b)//2
a_traiter.append((a,milieu))
a_traiter.append((milieu+1,b))

return max_act

Pour rappel, les deux stratégies connues jusqu’ici sont les suivantes :

Définition 2 : diviser-pour-régner

Pour résoudre un problème, on le divise en sous-
problèmes, qu’on résout chacun indépendamment,
pour remonter à la solution du gros problème.

Définition 3 : stratégie gloutonne

Pour résoudre un problème d’optimisation, on
construit une solution petit à petit en prenant
à chaque étape ce qui est le mieux localement.

Il est important de noter que ces définitions ne sont pas des définitions formelles.

La programmation dynamique est une « généralisation » du diviser-pour-régner :

Définition 4 : programmation dynamique

Pour résoudre un problème, on le divise en sous-problèmes, qui ne sont pas forcément indépendants les uns des
autres, pour remonter à la solution du gros problème.

1

2 Un exemple : le problème du rendu de monnaie

On considère un système monétaire, par exemple l’euro : il y a des pièces ou billets de 1, 2, 5, 10, 20, 50, 100 et 200 €.
M. Sogé, banquier de son état, doit faire l’appoint pour rendre une valeur de 53€. Comment peut faire M. Sogé pour
faire l’appoint en utilisant le moins d’unités possibles?

Définition 5

Le problème du rendu de monnaie est le problème suivant :
Donnée : une liste finie d’entiersC = [c0, c1, . . . , c|c|´1] et un entierN ;

Question : trouver des entiers (ak)0ďkď|c|´1 tels queN =

|C|´1
ÿ

k=0

akck = N , de sorte que
|C|´1
ÿ

k=0

ak soitminimale.

Par souci de simplicité, on supposera toujours ici que c0 = 1, doncque tout entierN dispose d’unedécomposition.

2.1 Une première approche par algorithme glouton

L’algorithme glouton consiste ici à construire la solution en choisissant au fur et à mesure la « plus grosse pièce » qui
puisse encore passer.

Données :C une liste d’entiers,N un entier
res Ð tableau rempli de 0 de longueur |C|

r Ð N
tant que r ‰ 0 :

trouver ci P C maximal tel que ci ď r
res[i] Ð res[i] + 1, r Ð r ´ ci

retourner res
L’algorithme ci-dessus est de complexitéO(|C| ˆK),
oùK est le nombre de pièces utilisées dans la solution
optimale cherchée ; l’algorithme à droite est de com-
plexitéO(|C|), ouO(log(|C|) ˆ |C|) s’il faut trierC
au préalable.

L’algorithme à gauche permet de trouver une solution
gloutonne au problème du rendu de monnaie. Il est
possible d’améliorer considérablement l’algorithme en
calculant directement res[i] à l’aide d’une division eu-
clidienne.
Données :C triée,N un entier
res Ð tableau rempli de 0 de longueur |C|

r Ð N
pour i de |C|-1 à 0 :

res[i] Ð r//ci
r Ð r mod ci

retourner res

M. Lloyds, banquier britannique, observe les formidables performances de l’algorithme de M. Sogé : il veut l’utiliser
lui aussi ! Au Royaume-Uni, le système monétaire est légèrement différent : il y a des pièces de 1, 2, 5, 10, 20, 25, 50, 100
et 200 £. Un jour, il doit rendre une somme de 41£ : patatras !

Propriété 6

Il existe des listesC telles que l’algorithme glouton ne donne pas la solution optimale du rendu de monnaie.

Démonstration.
L’algorithme glouton donne 41 = 25 + 10 + 5 + 1 ; pourtant il y a la solution 41 = 20 + 20 + 1 (qui est la
solution optimale).

Plus précisément, certains systèmesmonétaires (la plupart) font que l’algorithme glouton donne la solution optimale :
un tel système est appelé canonique. Une question importante devient alors la canonicité d’un système monétaire. Il
existe toute une théorie autour des sytèmes canoniques, dont on peut retenir les principes suivants :

— il n’existe pas de caractérisationmathématique évidente des systèmes canoniques qui soit indépendante de la taille
du système;

— il existe des algorithmes permettant de savoir si un système est canonique (Kozen-Zaks) ;
— il existe des caractérisations dans le cas de petits systèmes (jusqu’à 6 pièces).

2

2.2 Une seconde approche : mémoïsation et programmation dynamique

Pour résoudre le problème du rendu demonnaie dans tout systèmemonétaire, l’idée consiste à construire une solution
pourN à partir de solutions pour les entiers plus petits.

2.2.1 Approche top-down

Prenons un système non-canonique C = [1, 4, 9]. Pour déterminer une décomposition deN , l’idée est alors de sup-
poser avoir déjà une décomposition deN ´ 1,N ´ 4 etN ´ 9. On prend la plus petite de ces trois décompositions : on
en déduit une décomposition deN .

La programmation dynamique prend ici la
forme d’une simple récursivité. Un point cru-
cial est toutefois que ce programme est parti-
culièrement inefficace en temps. La raison est
qu’on fait appel à rendu_monnaie de nom-
breuses fois sur des valeurs deN identiques.
Question. Dessiner l’arbre d’appels récursifs
pourC = [1, 4, 9] etN = 12.

def rendu_monnaie(C,N):
if N == 0:

return 0
R = []
for in range(len(C)):

if N >= c[i]:
R.append(rendu_monnaie(C,N-c[i]))

return min(R)+1

Pour éviter ces appels redondants, on met alors en place lamémoïsation : on crée un tableau pour stocker les valeurs
calculées.

def rendu_monnaie(C,N):
tab = [-1 for n in range(N+1)]
tab[0] = 0
def aux(k):

if tab[k] != -1:
return tab[k]

R = []
for c in C:

if k-c >= 0:
R.append(aux(k-c))

tab[k] = min(R)+1
return tab[k]

return aux(N)

Ici, tab est ce qui nous permet de faire lamémoïsation. La fonc-
tion aux, définie à l’intérieur de notre fonction principale, est
une fonction auxiliaire : elle prend enparamètrek, qui sera notre
valeur intermédiaire dont on cherche une solution. Si tab[k]
est déjà remplie, alors il n’y a pas besoin de la calculer ; sinon, on
fait les appels récursifs nécessaires.
Pour déterminer la complexité de notre programme, on dis-
tingue les appels à aux qui remplissent une case de ceux où la
case est déjà remplie :

— remplir la case : un tel appel a lieu une seule fois pour tout
k P J0, NK, et est enO(|C|) ;

— case déjà remplie : un tel appel a lieu au plus |C| fois, et
est enO(1).

Au total, on atteint donc une complexité temporelle enO(|C| ˆ N).

2.2.2 Approche bottom-up

Dans l’approche précédente, on est parti de N ,
et on est descendu dans les appels récursifs.Mais
quitte à remplir un grand tableau, on peut aussi
le faire directement, en partant des petites va-
leurs faciles à calculer, et en montant dans le ta-
bleau : c’est l’approche bottom-up, par opposi-
tion à la top-down.
Lesboucles imbriquées donnentune complexité
temporelle enO(|C| ˆ N).

def rendu_monnaie(C,N):
tab = [-1 for n in range(N+1)]
tab[0] = 0
for k in range(1,N+1):

m = N+1
for c in C:

if k-c >= 0 and tab[k-c]+1 < m:
m = tab[k-c]+1

tab[k] = m
return tab[N]

On remarque qu’il n’y a pas de différence de complexité temporelle entre approches top-down et bottom-up.

3

3 Un autre exemple : distance dans un graphe orienté

Considérons un graphe orientéG : on le représentera ici
sous forme d’une matrice d’adjacence M_G. Par exemple,
M_G[0][1] = 4. S’il n’y a pas d’arête, on dira que le
poids est infini.
En Python, on utilisera la notation M_G[1][0]=
float('inf'), qui représente +8 (et est compatible
avec la comparaison et les opérations arithmétiques).

0

1

2

3

4

5
4

2

1

5

7

3

2

1

4

Définition 7

Le problème de la distance entre deux sommets dans un graphe est le problème suivant :
Donnée : un grapheG et deux sommets s et t

Question : trouver un chemin de s à t de poids minimal.

3.1 Algorithme de Dijsktra

L’algorithmedeDijkstra est un algorithme ef-
ficace, qui fonctionne sous l’hypothèse que
les arêtes sont de poids positifs. Il s’agit d’un
algorithme glouton : pour choisir le nouveau
sommet u à étudier, on prend le sommet le
plus proche non encore traité.

La complexité de l’algorithme de Dijkstra dé-
pend de l’implémentation des objets, et en
particulier de l’étape d’extraction (qui permet
d’obtenir u). En utilisant des tableaux, cette
extraction se fait en O(n) avec n le nombre
de sommets ; au total, cet algorithme est en
complexité temporelle O(n2), et complexité
spatialeO(n).

Données :MG, s et t
n Ð nombre de sommets
pred Ð tableau rempli de 0 de longueur n
dist Ð tableau rempli de+8 de longueur n ; dist[s] Ð 0
S Ð sommets du graphe
tant que S n’est pas vide :

u Ð élément de S dont la dist est minimale
retirer u de S
pour tout sommet v :

d Ð dist[u] +MG[u][v]
si d ă dist[v] :

dist[v] Ð d
pred[v] Ð u

retourner dist[t] et le chemin de s à t à partir de pred

3.2 Algorithme de Bellman-Ford

L’un des problèmes deDijkstra est qu’il ne fonctionne
pas nécessairement correctement dans le cas où il y a un
cycle de poids négatif : il ne détectera même pas forcé-
ment ce cycle.

0 1 212
-5

2

L’algorithme de Bellman-Ford calcule un ta-
bleau dist tel que dist[u] contiendra, à la fin,
la longueur du plus petit chemin de s à u.
Le sous-problème étudié est le calcul des plus
courts chemins depuis s vers tout sommet u
en utilisant k arêtes, pour k allant de 0 (avant
le premier passage de boucle) jusqu’à n ´ 1.
S’il n’y a pas de cycle négatif, le plus court che-
min sera de longueur au plus n ´ 1.

Données :MG, s et t
n Ð nombre de sommets
pred Ð tableau rempli de 0 de longueur n
dist Ð tableau rempli de+8 de longueur n ; dist[s] Ð 0
pour k de 1 à n ´ 1 :

pour tout couple de sommets (u, v) :
d Ð dist[u] +MG[u][v]
si d ă dist[v] :

dist[v] Ð d, pred[v] Ð u

retourner dist[t] et le chemin de s à t à partir de pred

4

On peut modifier l’algorithme pour détecter les cycles négatifs : si, à la fin, il existe un couple (u, v) tel que dist[v] ą

dist[u] +MG[u][v], c’est que le graphe possède un cycle négatif.
L’algorithme de Bellman-Ford est de complexité temporelleO(n3) (et spatialeO(n)).

3.3 Algorithme de Floyd-Warshall

On s’intéresse désormais à une version légèrement différente du problème précédent : peut-on donner la distance de
tout sommet vers tout sommet?

Définition 8

Le problème de la distance entre tous sommets dans un graphe est le problème suivant :
Donnée : un grapheG

Question : calculer le tableau dist tel que dist[u][v] est la distance de u à v dansG.

Cette fois, le découpage en sous-problème est légèrementdifférent : il s’agira du calcul de la distancedepuis tout sommet
u vers tout sommet v, en se contraignant à utiliser comme sommets intermédiaires les sommets 0 à k.

L’algorithme de Floyd-Warshall est de complexité tempo-
relleO(n3), et de complexité spatialeO(n2).

L’algorithme de Floyd-Warshall détecte les cycles négatifs :
on peut vérifier, à la fin, s’il y a une valeur strictement né-
gative sur la diagonale de dist.

On peut alléger ce code, en remarquant que les copies de
dist sont inutiles, et qu’on peut travailler dans une seule
matrice qu’on met à jour. On remarque en effet que s’il
n’y a pas de cycle négatif, il n’y a jamais, lors de la boucle
k, de mise à jour d’aucun dist(k)[u][k] ou dist(k)[k][v],
donc le calcul de d est correct même sans recopie de dist.
S’il y a des cycles de poids négatifs, il y aura des problèmes
de mise à jour, mais on détectera la présence de cycles né-
gatifs.

Données :MG

n Ð nombre de sommets
dist(´1) Ð matrice n ˆ n qui est une copie deMG

pour k de 0 à n ´ 1 :
dist(k) Ð copie de dist(k´1)

pour tout couple de sommets (u, v) :
d Ð dist(k´1)[u][k] + dist(k´1)[k][v]
si d ă dist(k)[u][v] :

dist(k)[u][v] Ð d

retourner dist(n´1)

3.4 Codes entiers

def extraire_min(l,d):
ind = 0
for i in range(len(l)):

if d[l[i]] < d[l[ind]]:
ind = i

return l[ind],l[:ind]+l[ind+1:]

Une légère différence par rapport à l’algorithme
donné est l’initialisation de pred : dans ce code, on
a préféré dire que par défaut, un sommet est son
propre prédécesseur.

def dijkstra(M_G,s,t) :
n = len(M_G)
pred = list(range(n))
dist = n*[float('inf')]
dist[s] = 0
sommets = list(range(n))
while sommets != []:

u,sommets = extraire_min(sommets,dist)
for i in range(n):

d = dist[u]+M_G[u][i]
if d < dist[i]:

pred[i],dist[i] = u,d
chemin,som = [t],t
while som != s:

som = pred[som]
chemin = [som]+chemin

return dist[t],chemin

5

def bellman_ford(M_G,s,t):
n = len(M_G)
pred = list(range(n))
dist = n*[float('inf')]
dist[s] = 0
for k in range(n):

for u in range(n):
for v in range(n):

d = dist[u]+M_G[u][v]
if d < dist[v]:

dist[v],pred[v] = d,u
chemin,som = [t],t
while som != s:

som = pred[som]
chemin = [som]+chemin

return dist[t],chemin

from copy import deepcopy

def floyd_warshall(M_G):
n = len(M_G)
dist = deepcopy(M_G)
for k in range(n):

for u in range(n):
for v in range(n):

d = dist[u][k] + dist[k][v]
if d < dist[u][v]:

dist[u][v] = d
return dist

6

	Stratégies algorithmiques
	Définitions et exemples

	Un exemple : le problème du rendu de monnaie
	Une première approche par algorithme glouton
	Une seconde approche : mémoïsation et programmation dynamique
	Approche top-down
	Approche bottom-up

	Un autre exemple : distance dans un graphe orienté
	Algorithme de Dijsktra
	Algorithme de Bellman-Ford
	Algorithme de Floyd-Warshall
	Codes entiers

