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Many decision problems concerning cellular automata are known to be decidable in the

case of algebraic cellular automata, that is, when the state set has an algebraic structure

and the automaton acts as a morphism. The most studied cases include finite fields, finite
commutative rings and finite commutative groups. In this paper, we provide methods to

generalize these results to the broader case of group cellular automata, that is, the case
where the state set is a finite (possibly non-commutative) finite group. The configuration

space is not even necessarily the full shift but a subshift – called a group shift – that is a

subgroup of the full shift on Zd, for any number d of dimensions. We show, in particular,
that injectivity, surjectivity, equicontinuity, sensitivity and nilpotency are decidable for
group cellular automata, and non-transitivity is semi-decidable. Injectivity always implies

surjectivity, and jointly periodic points are dense in the limit set. The Moore direction
of the Garden-of-Eden theorem holds for all group cellular automata, while the Myhill

direction fails in some cases. The proofs are based on effective projection operations on

group shifts that are, in particular, applied on the set of valid space-time diagrams of
group cellular automata. This allows one to effectively construct the traces and the limit

sets of group cellular automata. A preliminary version of this work was presented at the
conference Mathematical Foundations of Computer Science 2020.

Keywords: group cellular automata; group shift; symbolic dynamics; decidability

1. Introduction

Algebraic group shifts and group cellular automata operate on configurations that

are colorings of the infinite grid Zd by elements of a finite group G, called the

state set. The set GZd

of all configurations, called the full shift, inherits the group

structure as the infinite cartesian power of G. A subshift (a set of configurations

avoiding a fixed set of forbidden finite patterns) is a group shift if it is also a

1



April 11, 2023 17:36 WSPC/INSTRUCTION FILE additive˙SI

2 Authors’ Names

subgroup of GZd

. Group shifts are known to be of finite type, meaning that they

can be defined by forbidding a finite number of patterns. A cellular automaton is

a dynamical system on a subshift, defined by a uniform local update rule of states.

A cellular automaton on a group shift is called a group cellular automaton if it is

also a group homomorphism.

In this work we demonstrate that group shifts and group cellular automata

in arbitrarily high dimensions d are amenable to effective manipulations and al-

gorithmic decision procedures. This is in stark contrast to the general setup of

multidimensional subshifts of finite type and cellular automata where most proper-

ties are undecidable. Our considerations generalize a long line of past results – see

for example [7, 8] and citations therein – on algorithms for linear cellular automata

(whose state set is a finite commutative ring) and additive cellular automata (whose

state set is a finite abelian group) to non-commutative groups and to arbitrary di-

mensions, and from the full shift to arbitrary group shifts. Our methods are based

on two classical results on group shifts: all group shifts – in any dimension – are

of finite type, and they have dense sets of periodic points [19, 28]. By a standard

argumentation these provide a decision procedure for the membership in the lan-

guage of any group shift. We show how to use this procedure to effectively construct

any lower dimensional projection of a given group shift (Corollary 10), and to con-

struct the image of a given group shift under any given group cellular automaton

(Corollary 11).

To establish decidability results for d-dimensional group cellular automata we

then view the set of valid space-time diagrams as a (d+1)-dimensional group shift.

The local update rule of the cellular automaton provides a representation of this

group shift. The one-dimensional projections in the temporal direction are the trace

subshifts of the automaton that provide all possible temporal evolutions for a fi-

nite domain of cells, and the d-dimensional projection in the spatial dimensions is

the limit set of the automaton. These can be effectively constructed. From the trace

subshifts – which are one-dimensional group shifts themselves – one can analyze the

dynamics of the cellular automaton and to decide, for example, whether it is periodic

(Theorem 25), equicontinuous or sensitive to initial conditions (Theorem 27). There

is a dichotomy between equicontinuity and sensitivivity (Lemma 26). We can semi-

decide negative instances of mixing properties, i.e., non-transitive and non-mixing

cellular automata (Theorem 28). The limit set reveals whether the automaton is

nilpotent (Theorem 25), surjective or injective (Theorem 21). Note that all these

considerations work for group cellular automata over arbitrary group shifts, not

only over full shifts, and in all dimensions. We also note that in our setup injectiv-

ity implies surjectivity (Corollary 20) and that surjectivity implies pre-injectivity

(Theorem 24), with neither implication holding in the inverse direction in general.

Moreover, in all surjective cases jointly spatially and temporally periodic points are

dense (Corollary 19).

The paper is structured as follows. We start by providing the necessary terminol-
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ogy and classical results about shift spaces and cellular automata; first in the general

context of multidimensional symbolic dynamics and then in the algebraic setting in

particular. In Section 3 we define projection operations on group shifts and exhibit

effective algorithms to implement them. This involves the main technical proof of

the paper. In Section 4 we apply the projections on space-time diagrams of cellular

automata to effectively construct their traces and limit sets. These are then used

to provide decision algorithms for a number of properties concerning group cellular

automata.

We presented a preliminary version of this work at the conference Mathematical

Foundations of Computer Science (MFCS 2020) [1]. The present article adds the

main proof in Section 3 of how the projections can be effectively constructed, and

a new part in Section 4 concerning the Garden-of-Eden theorem.

2. Preliminaries

We first give definitions related to general subshifts and cellular automata, and

then discuss concepts and properties particular to group shifts and group cellular

automata.

Symbolic dynamics

A d-dimensional configuration over a finite alphabet A is an assignment of symbols

of A on the infinite grid Zd. We call the elements of A the states. For any configu-

ration c ∈ AZd

and any cell u ∈ Zd, we denote by cu the state c(u) that c has in

the cell u. For any a ∈ A we denote by aZ
d

the uniform configuration defined by

aZ
d

u = a for all u ∈ Zd.

For a vector t ∈ Zd, the translation τ t shifts a configuration c so that the cell t

is pulled to the cell 0, that is, τ t(c)u = cu+t for all u ∈ Zd. We say that c is periodic

if τ t(c) = c for some non-zero t ∈ Zd. In this case t is a vector of periodicity and c is

also termed t-periodic. If there are d linearly independent vectors of periodicity then

c is called totally periodic. We denote by ei = (0, . . . , 0, 1, 0 . . . , 0) the basic i’th unit

coordinate vector, for i = 1, . . . , d. A totally periodic c ∈ AZd

has automatically, for

some k > 0, vectors of periodicity ke1, ke2, . . . , ked in the d coordinate directions.

Let D ⊆ Zd be a finite set of cells, a shape. A D-pattern is an assignment p ∈ AD

of symbols in the shape D. A (finite) pattern is a D-pattern for some shape D. We

call D the domain of the pattern. We say that a finite pattern p of shape D appears

in a configuration c if for some t ∈ Zd we have τ t(c)|D = p. We also say that

c contains the pattern p. For a fixed D, the set of D-patterns that appear in a

configuration c is denoted by LD(c). We denote by L(c) the set of all finite patterns
that appear in c, i.e., the union of LD(c) over all finite D ⊆ Zd.

Let p ∈ AD be a finite pattern of a shape D. The set [p] = {c ∈ AZd | c|D = p}
of configurations that have p in the domain D is called the cylinder determined

by p. The collection of cylinders [p] is a base of a compact topology on AZd

, the

prodiscrete topology. See, for example, the first few pages of [6] for details. The
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topology is equivalently defined by a metric on AZd

where two configurations are

close to each other if they agree with each other on a large region around the cell

0. Cylinders are clopen in the topology: they are both open and closed.

A subset X of AZd

is called a subshift if it is closed in the topology and closed

under translations. Note that – somewhat nonstandardly – we allow X to be the

empty set. By a compactness argument one has that every configuration c that is not

in X contains a finite pattern p that prevents it from being in X: no configuration

that contains p is inX. We can then as well define subshifts using forbidden patterns:

given a set P of finite patterns we define

XP = {c ∈ AZd

| L(c) ∩ P = ∅},

the set of configurations that do not contain any of the patterns in P . The set XP

is a subshift, and every subshift is XP for some P . If X = XP for some finite P then

X is a subshift of finite type (SFT). For a subshift X ⊆ AZd

we denote by LD(X)

and L(X) the sets of the D-patterns and all finite patterns that appear in elements

of X, respectively. The set L(X) is called the language of the subshift.

A continuous function F : X −→ Y between d-dimensional subshifts X ⊆
AZd

and Y ⊆ BZd

is a shift homomorphism if it is translation invariant, that is,

τ tY ◦ F = F ◦ τ tX for every t ∈ Zd, where we have denoted the translations τ t by

a vector t with a subscript that indicates the space. A shift homomorphism from

a subshift X to itself (i.e. a shift endomorphism) is called a cellular automaton on

X. The Curtis-Hedlund-Lyndon-theorem [11] states that shift homomorphisms are

precisely the functions X −→ Y defined by a local rule as follows. Let N ⊆ Zd

be a finite neighborhood and let f : LN (X) −→ B be a local rule that assigns a

letter of B to every N -pattern that appears in X. Applying f at each cell yields

a function Ff : X −→ BZd

that maps every c according to Ff (c)u = f(τu(c)|N )

for all u ∈ Zd. Shift homomorphisms X −→ Y are precisely such functions Ff that

also satisfy Ff (X) ⊆ Y .

The image F (X) of a subshift under a shift homomorphism F is clearly also a

subshift. Images of subshifts of finite type are called sofic. We refer to [21, 22] for

more concepts and results on symbolic dynamics.

Group shifts and group cellular automata

Let G be a finite (not necessarily commutative) group. There is a natural group

structure on the d-dimensional configuration space GZd

where the group operation

is applied cell-wise: (ce)u = cueu for all c, e ∈ GZd

and u ∈ Zd. A group shift is a

subshift of GZd

that is also a subgroup. In particular, a group shift is not empty.

A cellular automaton F : X −→ X on a group shift X ⊆ GZd

is a group cellular

automaton if it is a group homomorphism: F (ce) = F (c)F (e) for all c, e ∈ X. More

generally, a shift homomorphism F : X −→ Y that is also a group homomorphism

between groups shifts X and Y is called a group shift homomorphism.
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Group shifts have two important properties that are central in algorithmic de-

cidability [18]: every group shift is of finite type, and totally periodic configurations

are dense in all group shifts [19, 28].

Theorem 1 ([19]) Every group shift is a subshift of finite type.

It follows from this theorem that every group shift X has a finite representation

using a finite collection P of forbidden finite patterns as X = XP . This is the

representation assumed in all algorithmic questions concerning given group shifts.

Also when we say that we effectively construct a group shift X we mean that we

produce a finite set P of finite patterns such that X = XP .

Theorem 2 ([19]) Totally periodic configurations are dense in group shifts, i.e.,

for every p ∈ L(X) there is a totally periodic c ∈ X such that p ∈ L(c).

As an immediate corollary of these two fundamental properties we get that the

language of a group shift is (uniformly) recursive.

Corollary 3. There is an algorithm that determines, for any given group shift X ⊆
GZd

and any given finite pattern p ∈ GD whether p is in the language L(X) of X.

Proof. This is a standard argumentation by Hao Wang [29]: There is a (non-

deterministic) semi-algorithm for positive membership p ∈ L(X) that guesses a

totally periodic configuration c ∈ GZd

, verifies that c contains the pattern p, and

finally verifies that c does not contain any of the forbidden patterns in the given set

P that defines X = XP . Such a configuration c exists by Theorem 2 iff p ∈ L(X).
Conversely, as for any SFT, there is a semi-algorithm for the negative cases p ̸∈ L(X)
that guesses a number n, makes sure that the domain D of p ∈ GD is a subset of

E = {−n, . . . , n}d, enumerates all finitely many patterns q with domain E that

satisfy q|D = p, and verifies that all such q contain a copy of a forbidden pattern in

P that defines X = XP . By compactness such a number n exists iff p ̸∈ L(X).

The representation of an SFT in terms of forbidden patterns is not unique.

However, as soon as the language is recursive, we can effectively test if given repre-

sentations define the same SFT.

Corollary 4. There are algorithms to determine

(a) whether X1 ⊆ X2 holds for given group shifts X1,X2 ⊆ GZd

,

(b) whether X1 = X2 holds for given group shifts X1,X2 ⊆ GZd

,

Proof. To prove (a), let P = {p1, . . . , pk} be the given set of forbidden patterns

that defines X2 = XP . We have X1 ⊆ X2 if and only if p1, . . . , pk ̸∈ L(X1), so

(a) follows from Corollary 3. Now (b) follows trivially from (a) and the fact that

X1 = X2 iff X1 ⊆ X2 and X2 ⊆ X1.
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Another important known property is that there are no infinite strictly decreasing

chains X1 ⊋ X2 ⊋ X3 ⊋ . . . of group shifts [19]. This is clear as the intersection

X of such a chain is a group shift and hence, by Theorem 1, there is a finite set P

such that X = XP . If a pattern p is in the languages of all Xk in the chain then p

is also in the language of the intersection X, proving that for large enough k the

language of Xk does not contain any of the forbidden patterns in P . This implies

that Xk = X and the chain does not decrease any further. (Note, however, that

while we presented here the decreasing chain property as a corollary to Theorem 1,

in reality the proof is interweaved in the proof of Theorem 1, see [19].)

Theorem 5 ([19]) There does not exist an infinite chain X1 ⊋ X2 ⊋ X3 ⊋ . . . of

group shifts Xi ⊆ GZd

.

We also mention the obvious fact that pre-images of group shifts under group

shift homomorphisms F : X −→ HZd

are group shifts and they can be effectively

constructed. In particular, this applies to the kernel ker(F ) = F−1(1Zd

H ) of F . (We

denote the identity element of any group G by 1G, or simply by 1 if the group is

clear from the context.)

Lemma 6. For any given d-dimensional group shifts X ⊆ GZd

and Y ⊆ HZd

, and

for a given group shift homomorphism F : X −→ HZd

, the set F−1(Y) is a group

shift that can be effectively constructed. In particular, the kernel ker(F ) is a group

shift that can be effectively constructed.

Proof. The set F−1(Y) is clearly topologically closed, translation invariant, and

a group, and therefore it is a group shift. Let P and Q be the given finite sets

of forbidden patterns defining X = XP and Y = XQ. Let f : LN (X) −→ H be the

given local rule with neighborhood N ⊆ Zd that defines F = Ff . For each forbidden

q ∈ HD in Q we forbid all patterns p ∈ GD+N that the local rule maps to q. We

also forbid all patterns p ∈ P . The resulting subshift of finite type is F−1(Y).

3. Algorithms for group shifts

To effectively manipulate group shifts we need algorithms to perform some basic

operations. The main operations we consider are taking projections, either to lower

the dimension of the space or to project into a subgroup of the state set but keeping

the dimension. As a byproduct we obtain an algorithm to compute the image of a

given group shift under a given group cellular automaton. We use derivatives of the

symbol π for projections from Zd to lower dimensional grids, and derivatives of the

symbol ψ for projections that keep the dimension of Zd but change the state set.

It is essential that projected group shifts remain as group shifts, thereby ensuring

they are of finite type. It should be noted that in the general non-group case,

projected subshifts of finite type may not necessaril [12]. Therefore, group shifts

behave particularly well with respect to projections.
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Notations for projections to lower dimensions

Let us first define the projection operators that cut from d-dimensional configura-

tions (d− 1)-dimensional slices of finite width in the first dimension. Let d ≥ 1 be

the dimension and n ≥ 1 the width of the slice. For any d-dimensional configuration

c ∈ AZd

over alphabet A the n-slice π(n)(c) is the (d− 1)-dimensional configuration

over alphabet An that has in any cell u ∈ Zd−1 the n-tuple (c(1,u), . . . , c(n,u)) ∈
An. The n-slice of a subshift X ⊆ AZd

is then the set π(n)(X) of the n-slices of

all c ∈ X. Due to translation invariance of X, the fact that we cut slices at first

coordinate positions 1, . . . , n is irrelevant: we could use any n consecutive first co-

ordinate positions instead. Clearly π(n)(X) is a subshift, and if X ⊆ GZd

is a group

shift then π(n)(X) is also a group shift over the group Gn = G× · · · ×G, the n-fold

cartesian power of G.

Patterns in (d − 1)-dimensional slices of thickness n can be interpreted in a

natural way as d-dimensional patterns having the width n in the first dimension.

We introduce the notation p̂ for such an interpretation of a pattern p. More precisely,

for any D ⊆ Zd−1 and a (d− 1)-dimensional pattern p ∈ (Gn)D over the alphabet

Gn we denote by p̂ ∈ GE the corresponding d-dimensional pattern over G whose

domain is E = {1, . . . , n} × D ⊆ Zd and p(u) = (p̂(1,u), p̂(2,u), . . . , p̂(n,u)) for

every u ∈ D. For a subshift X we then have that p ∈ L(π(n)(X)) if and only if

p̂ ∈ L(X). In particular, using an algorithm for the membership of a pattern in

L(X) we can also decide the membership of any given finite pattern in L(π(n)(X)).

Based on Corollary 3 we then have immediately the following fact for groups shifts.

Lemma 7. One can effectively decide for any given d-dimensional group shift X ⊆
GZd

, any given n ≥ 1 and any given (d − 1)-dimensional finite pattern p ∈ (Gn)D

whether p ∈ L(π(n)(X)). □

Projections π(n)(X) are elementary slicing operations that can be composed

together, as well as with permutations of coordinates, to obtain more general pro-

jections of subshifts into lower dimensional grids. Very generally, for any subset

E ⊆ Zd we call the restriction c|E the projection of c on E, and the projection of a

subshift X on E is πE(X) = {c|E | c ∈ X}. We mostly use operation πE with sets of

type E = D×Zk for some k < d and a finite D ⊆ Zd−k, and we mostly apply πE to

group shifts X ⊆ GZd

. The projection πE(X) is then viewed in the natural manner

as the k-dimensional group shift over the finite group GD. One of the main results

of this section is Corollary 10, stating that we can effectively construct πE(X) for

given X and E = D × Zk.

Notations for projections that keep the dimension

Let G = G1 × G2 be a cartesian product of two finite groups. For any c ∈ GZd

we let ψ(1)(c) ∈ GZd

1 and ψ(2)(c) ∈ GZd

2 be the cell-wise projections to G1 and

G2, respectively, defined by cu = (ψ(1)(c)u, ψ
(2)(c)u) for all u ∈ Zd. By abuse of

notation, for any c(1) ∈ GZd

1 and c(2) ∈ GZd

2 we denote by (c(1), c(2)) the configuration
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c ∈ (G1×G2)
Zd

such that ψ(i)(c) = c(i) for i = 1, 2. We also use the similar notation

on finite patterns and implicitly use the obvious way to identify GD
1 × GD

2 and

(G1 ×G2)
D.

Clearly, for any group shift X ⊆ GZd

, the sets ψ(1)(X) and ψ(2)(X) are group

shifts over G1 and G2, respectively. A pattern p ∈ (G1)
D is in the language of

ψ(1)(X) if and only if there is a pattern q ∈ (G2)
D such that (p, q) ∈ LD(X).

Therefore we have the following counterpart of Lemma 7.

Lemma 8. One can effectively decide for any given d-dimensional group shift X ⊆
(G1 × G2)

Zd

, and any given d-dimensional finite pattern p ∈ (G1)
D whether p ∈

L(ψ(1)(X)). □

Let D,E be finite sets, D ⊆ E, and let X ⊆ (GE)Z
d

be a group shift over

the finite cartesian power GE of the group G. The group GE is isomorphic to

GD ×GE\D in a natural manner, and ψ(1) projects then X into (GD)Z
d

. We denote

this projection by ψD. Notice that πD×Zk = ψD ◦πE×Zk so that the projection into

D×Zk can be obtained as a composition of projections π(n) into slices, permutations

of coordinates, and a projection of the type ψ(1).

Effective constructions

Our main technical result is that projections of group shifts can be effectively con-

structed. We state this as a two-part lemma. Corollaries 10 and 11 that follow the

lemma provide clean statements that we use in the rest of the paper.

Lemma 9. Let d ≥ 1 be a dimension, and let G and G1,G2 be finite groups.

(a) For any given d-dimensional group shift X ⊆ GZd

and any given n ≥ 1

one can effectively construct the d − 1 dimensional group shift π(n)(X) ⊆
(Gn)Z

d−1

.

(b) For any given d-dimensional group shift X ⊆ (G1×G2)
Zd

one can effectively

construct the d-dimensional group shift ψ(1)(X) ⊆ GZd

1 .

Proof. The proof is by induction on dimension d. We first prove (a) for dimension

d assuming that (b) holds in dimension d− 1, and then we prove (b) for dimension

d assuming (a) holds in dimension d and that (b) holds for dimension d − 1. To

start the induction we observe that (b) trivially holds for dimension d = 0: In this

case group shifts over G are precisely subgroups of G.

Proving (a) for dimension d assuming (b) holds for dimension d − 1: Let a width

n ≥ 1 and a group shift X ⊆ GZd

be given (in terms of a finite set P of forbidden

patterns such that X = XP ). Let us first assume that n is at least the width of the

patterns in P so that we can assume that all patterns in P have the same domain

{1, . . . , n} × D for some finite D ⊆ Zd−1. (Note that we can effectively grow the

domain of each forbidden pattern by forbidding instead all patterns with the larger
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domain that extend the original pattern. Thus a common domain can be taken for

all elements in P . We can also shift the domains of the patterns.)

To construct the (d − 1)-dimensional projection Y = π(n)(X) we effectively

enumerate and forbid patterns that are not in the language of Y. We accumulate

the forbidden patterns in a set Q that we initialize to be the empty set in the

beginning of the process. Let D1, D2, . . . be an effective enumeration of all finite

subsets of Zd−1 with D1 = D. For each i = 1, 2, . . . in turn we go through all

(finitely many) patterns q over Gn having shape Di and check, using Lemma 7,

whether q is in L(Y). If not, we add q in the set Q. This way, at any time, Q only

contains patterns outside of L(Y) and hence forbidding patterns in Q gives an upper

approximation XQ ⊇ Y. Since Y is a group shift and therefore of finite type, by

systematically enumerating the patterns in the complement of L(Y) we eventually

reach a set Q such that Y = XQ.

The reason why we process all patterns for each shape Di before moving to the

next shape Di+1 is the observation that this way the subshift XQ is guaranteed to

be a group shift after finishing processing Di. We have the following general fact:

Claim 1. Let X ⊆ GZd

be any group shift in any dimension d, and let D ⊆ Zd be

finite. For Q = GD \ LD(X) the subshift XQ is a group shift and X ⊆ XQ.

Proof of Claim 1. Clearly XQ is a subshift and X ⊆ XQ. We just have to show

that XQ is a group. We have c ∈ XQ if and only if LD(c) ⊆ LD(X). The result now

follows from the fact that LD(X) is a subgroup of GD.

Intersections of group shifts are group shifts so Claim 1 indeed implies that after

fully processing any number of domains D1, . . . , Di the resulting subshift XQ ⊇ Y is

a group shift. Note also that D1 = D guarantees that already after the first round

i = 1 we have in Q all the patterns of P .

As mentioned above, we are guaranteed to eventually have enough forbidden

patterns in Q to have Y = XQ. The problem is to identify when we have enumerated

enough patterns and reached such a set Q. Fortunately this can be detected by

checking that the left and the right slices of width n−1 of the upper approximation

XQ are identical with each other, as detailed below.

Let us introduce notations ψL and ψR for the operations of extracting the

left and the right slices of width n − 1. More precisely, for a configuration c =

(c(1), . . . , c(n)) ∈ (Gn)Z
d−1

of thickness n, where c(i) ∈ GZd−1

are the single cell

wide slices of c, we define ψL(c) = (c(1), . . . , c(n−1)) and ψR(c) = (c(2), . . . , c(n)),

respectively. Both are elements of (Gn−1)Z
d−1

.

Claim 2. XQ = Y if and only if ψL(XQ) = ψR(XQ).

Proof of Claim 2. ψL(Y) = ψR(Y) = π(n−1)(X) so the implication from left to

right is clear. For the converse direction, let c ∈ XQ be arbitrary. By the assumption

ψL(XQ) = ψR(XQ) there exists a bi-infinite sequence . . . , c−1, c0, c1, . . . of configu-
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rations such that c0 = c and for all i ∈ Z we have ci ∈ XQ and ψR(ci) = ψL(ci+1).

Configurations ci and ci+1 overlap properly so that there is a d-dimensional con-

figuration c′ ∈ GZd

whose consecutive n-slices are . . . , c−1, c0, c1, . . . , that is,

ci = π(n)(τie1(c
′)) for all i ∈ Z. See Figure 1 for an illustration of c′. Since each for-

bidden pattern in P is also in Q, none of the slices contain such a forbidden pattern

and hence c′ ∈ X. Now c = c0 = π(n)(c′) so that c ∈ π(n)(X) = Y. We have shown

that XQ ⊆ Y. The opposite inclusion holds since XQ is an upper approximation of

Y.

-1c

0c

1c

2c

-2c

n

Fig. 1. An illustration of the overlapping n-slices forming the configuration c′ in the proof of

Claim 2.

Both ψL and ψR are projection operations of type (b) of the present lemma, so

by the inductive hypotheses and the fact that XQ is a (d − 1)-dimensional group

shift, the group shifts ψL(XQ) and ψR(XQ) can be effectively constructed. Moreover,

equality of group shifts is decidable so that the condition ψL(XQ) = ψR(XQ) can

be effectively checked. In conclusion, each time our algorithm finishes with adding

patterns of shape Di in Q it checks whether ψL(XQ) = ψR(XQ) holds for the

current group shift XQ. The algorithm stops and returns set Q once equality is

reached. This finishes the description of the algorithm for case (a), provided n is

large enough to have all patterns P in a slice of width n. If n is smaller, we first

execute the algorithm for large enough width m > n and effectively compute the

further projection π(n)(X) = ψm−n
L (π(m)(X)) to slices of width n. The projection

can be effectively computed by the inductive hypothesis because it is a (d − 1)-

dimensional operation of type (b) of the present lemma.

Proving (b) for dimension d assuming that (a) holds for dimension d and that (b)

holds for dimension d−1: Let X ⊆ (G1×G2)
Zd

be given (in terms of a finite set P of

forbidden patterns such that X = XP ). To construct the d-dimensional projection

Y = ψ(1)(X) we – analogously to the proof of case (a) above – use Lemma 8 to

effectively enumerate patterns that are not in the language of Y, thus obtaining
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upper approximations of Y by subshifts XQ. We process all patterns of a shape Di

before moving on to the next shape Di+1. This guarantees – as proved in Claim 1

above – that after finishing with each shape Di the shift XQ is a group shift.

We eventually reach a set Q such that Y = XQ, but the challenge is again to

identify when we have reached such Q. We establish this by proving that we can

effectively compute a number n such that Y = XQ if and only if π(n)(XQ) = π(n)(Y).
Once number n is known, the projection π(n)(XQ) can be effectively constructed

by the inductive hypothesis stating that case (a) of the present lemma holds in

dimension d. Indeed, XQ is a known d-dimensional group shift. The projection

π(n)(Y) can also be effectively constructed as projections ψ(1) and π(n) commute,

so that we can first construct π(n)(X) (using the inductive hypothesis that case (a)

of the present lemma holds in dimension d) and then we apply ψ(1) on the (d− 1)-

dimensional group shift π(n)(X) (using the inductive hypothesis that case (b) of the

present lemma holds in dimension d− 1) to obtain π(n)(Y).
All that remains is to compute a sufficiently large n for the implication

π(n)(XQ) = π(n)(Y) =⇒ XQ = Y

to hold.

First a note on notations: Recall that we denote for any c ∈ GZd

1 and e ∈ GZd

2 by

(c, e) the configuration in (G1 × G2)
Zd

such that ψ(1)(c, e) = c and ψ(2)(c, e) = e.

We also then denote for any c ∈ (Gn)Z
d

and c′ ∈ (Gm)Z
d

by (c, c′) the concatenated

configuration in (Gn+m)Z
d

, by the understanding that Gn+m = Gn × Gm. In the

following we are going to mix both types of concatenations. For example, for c ∈
(Gn

1 )
Zd

, c′ ∈ (Gm
1 )Z

d

, e ∈ (Gn
2 )

Zd

and e′ ∈ (Gm
2 )Z

d

we may write ((c, e), (c′, e′))

for a concatenated configuration in ((G1 × G2)
n+m)Z

d

, but also ((c, c′), (e, e′)) for

the same configuration, now expressed in (Gn+m
1 × Gn+m

2 )Z
d

. To help the reader

in the task of parsing such expressions, we use the notation [c|c′] for the second

type of concatenations, with the idea that n-slices can be visualized as strips in

the vertical direction and the vertical line | is a “separator” between concatenated

vertical strips. So the two examples above will be written as [(c, e)|(c′, e′)] and

([c|c′], [e|e′]), respectively.
Also note that for configurations c and e of the same group shift, say c, e ∈

(Gn)Z
d

, the notation ce is not for the concatenation of the strips but it is for the

cell-wise product of the configurations, i.e., for the product in the group (Gn)Z
d

.

For any group shift U over the alphabet G1×G2 we denote by cut(U) the set of
configurations c over G2 such that (1, c) ∈ U. Because cut(U) = ψ(2)(ker(ψ(1))∩U)
and because projections ψ(i) are group shift homomorphisms the set cut(U) is a

group shift.

Claim 3. For any given group shift U ⊆ (G1×G2)
Zk

, in any dimension k, one can

effectively construct cut(U).

Proof of Claim 3. By Lemma 6 we can effectively construct ker(ψ(1)). Inter-

sections of subshifts of finite type can be effectively constructed (simply take the
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union of the defining sets of forbidden patterns of the two SFTs). This means that

U′ = ker(ψ(1)) ∩ U can be effectively constructed. Let R be the constructed set of

finite patterns such that U′ = XR. All configurations in U′ have 1 in their first

components so to define ψ(2)(U′) it is enough to forbid for all (1, p) ∈ R the pattern

p.

After these notations we can proceed with the proof. Let m be a number such

that the forbidden patterns in set P that defines X fit in a slice of thickness m, that

is, the domain of each forbidden pattern in P is a subset of {1, . . . ,m} ×Zd−1. Let

us call a positive integer r a radius of synchronization if for all w ∈ G{1,...,m}×Zd−1

2

holds the implication

(∃u, v ∈ G{1,...,r}×Zd−1

2 ) [u|w|v] ∈ cut(π(m+2r)(X))

=⇒ w ∈ π(m)(cut(X)).
(1)

(See Figure 2 for an illustration.)

1
w

1 1
w

1
⇒

r rm

Fig. 2. An illustration of the implication (1). Upper and lower layers are configurations over G1 and
G2, respectively. Letter r is a radius of synchronization if for every w for which the left situation

exists in X also the right situation exists in X. The picture depicts only the first dimension – each
letter represents an entire (d− 1)-dimensional configuration.

Claim 4. A radius of synchronization exists, and we can effectively find one.

Proof of Claim 4. For any r, let us denote by Ur the set of w ∈ G{1,...,m}×Zd−1

2

that satisfy the left-hand-side of implication of (1), and by U the set of those that

satisfy the right-hand-side. Now U = π(m)(cut(X)) and Ur = ψ(cut(π(m+2r)(X)))
where ψ is the projection in the central segment of length m. It follows that Ur

and U are d− 1-dimensional group shifts. Group shifts Ur form a decreasing chain

U1 ⊇ U2 ⊇ . . . so by Theorem 5 there exists k such that Ur = Uk for all r ≥ k.

By a simple compactness argument we then also have that U = Uk: if w ∈ Uk then

for every r ≥ k there exists cr ∈ X as in the left of Figure 2, so that a limit of a

converging subsequence of ck, ck+1, . . . is as in the right of Figure 2, proving that

w ∈ U. This proves that k is a radius of synchronization.

To find a radius of synchronization we enumerate r = 1, 2, . . . and test for

each r whether Ur = U. This can be effectively tested: First, by Claim 3 the set

cut(X) can be constructed and then by the inductive hypothesis that (a) holds in

dimension d we can apply π(m) to form U. Second, by the inductive hypothesis
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that (a) holds in dimension d we can construct π(m+2r)(X), by Claim 3 we can

build cut(π(m+2r)(X)), and finally by the inductive hypothesis that (b) holds in

dimension d − 1 we apply ψ to construct Ur. So both U and Ur can be effectively

constructed, and by Corollary 4(b) we can test whether they are equal.

The importance of the radius of synchronization comes from the fact that suffi-

ciently wide slices of identities 1 can be extended.

Claim 5. Let r be a radius of synchronization. Then for any slice x ∈ π(k)(Y) of

any width k holds the implication

[x|1m+2r] ∈ π(k+m+2r)(Y) =⇒ [x|1m+2r+1] ∈ π(k+m+2r+1)(Y).

Proof of Claim 5. Assume the left-hand-side of the implication. Recalling

that Y = ψ(1)(X) there is a configuration c ∈ X such that π(k+m+2r)(c) =

[(x, y)|(1r, u)|(1m, w)|(1r, v)] for some slices y, u, w, v (of thicknesses k, r, m and r,

respectively) over G2. In particular then [u|w|v] ∈ cut(π(m+2r)(X)), so that the im-

plication (1) gives that w ∈ π(m)(cut(X)). By the definition of cut(X) there is a con-

figuration e ∈ X such that π(k+m+2r+1)(e) = [(1k, y′)|(1r, u′)|(1m, w)|(1r, v′)|(1, a)]
for slices y′, u′, v′ and a of thicknesses k, r, m, r and 1, respectively. The for-

bidden patterns in the set P that defines X have thickness at most m, so we

can cut and exchange tails at the common slice (1m, w) of c and e without in-

troducing any forbidden patterns. See Figure 3 for an illustration of the cut and

exchange between c and e along their common slice. This implies that the slice

[(x, y)|(1r, u)|(1m, w)|(1r, v′)|(1, a)] of thickness k+m+2r+1 is in π(k+m+2r+1)(X),
providing the result that [x|1m+2r+1] ∈ π(k+m+2r+1)(Y).

1
w v
m 1r

u
1r

y
xc

1
w v
m 1r

u
1re y

1k
’ ’ a

1
’

k r m r

Fig. 3. An illustration of cutting and reconnecting halves of configurations c and e along a common
slice of width m in the proof of Claim 5.

Let n = m+ 2r + 1 where r is the radius of synchronization that we computed

for X. This turns out to be a sufficient thickness for our purpose of halting the

algorithm.

Claim 6. If π(n)(XQ) = π(n)(Y) then π(k)(XQ) = π(k)(Y) for all k ≥ n.
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Proof of Claim 6. We prove this by induction on k. Case k = n is clear. For

the inductive step, suppose that π(k)(XQ) = π(k)(Y) is known for some k ≥ n and

consider slices of width k + 1. Containment π(k+1)(Y) ⊆ π(k+1)(XQ) is clear since

Y ⊆ XQ. We just need to prove that π(k+1)(XQ) ⊆ π(k+1)(Y).
Let c ∈ π(k+1)(XQ) so that c = [a|x|b] for a, b ∈ π(1)(XQ) and x ∈ π(k−1)(XQ).

We have [a|x], [x|b] ∈ π(k)(XQ) so that by the inductive hypothesis [a|x], [x|b] ∈
π(k)(Y). Because [x|b] is a slice in a configuration of Y, there exists a′ ∈ π(1)(Y)
such that [a′|x|b] ∈ π(k+1)(Y). Because Y is a group shift the product [a|x] [a′|x]−1 =

[aa′−1|1k−1] is in π(k)(Y). Because k−1 ≥ m+2r we get from Claim 5 that [aa′−1|1k]

is in π(k+1)(Y). But this is all we need: we get [aa′−1|1k] [a′|x|b] = [a|x|b] = c is in

π(k+1)(Y) as claimed.

It is now a simple compactness argument to show that if π(k)(XQ) = π(k)(Y)
for all k ≥ n then XQ = Y. So our algorithm constructs sets Q until condition

π(n)(XQ) = π(n)(Y) is satisfied for n = m + 2r + 1. At that time we can stop

because we know that we have reached the situation XQ = Y. This completes the

proof of Lemma 9. □

Lemma 9 is used in the rest of the paper via the following two corollaries. The

first corollary states that arbitrary projections can be effectively implemented on

group shifts.

Corollary 10. Given a d-dimensional group shift X ⊆ GZd

and given k < d

and a finite D ⊆ Zd−k we can effectively construct the k-dimensional group shift

πD×Zk(X) ⊆ (GD)Z
k

.

Proof. By shift invariance of X we arbitrarily translate D, so we may assume

without loss of generality that D is a subset of E = {1, . . . , n}d−k for some n.

By applying d− k times Lemma 9(a), permuting the coordinates as needed, we can

effectively construct X′ = πE×Zk(X). Now πD×Zk(X) = ψD(X′), and by Lemma 9(b)

the projection ψD from GE to GD can be effectively implemented.

The second corollary tells that images of group shifts under group cellular au-

tomata can be also effectively constructed.

Corollary 11. Given a d-dimensional group shift X ⊆ GZd

and given a group

shift homomorphism F : X −→ HZd

one can effectively construct the group shift

F (X) ⊆ HZd

.

Proof. Let X = XP where P is the given finite set of forbidden patterns that

defines X, and let F = Ff where f : LN (X) −→ H is the given local rule of F with

a neighborhood N . We can pad symbols to patterns to grow their domains, so we

can assume without loss of generality that all patterns in P have the same domain

D, that the neighborhood is the same set N = D, and that 0 ∈ D.
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We first effectively construct X′ = {(c, F (c)) | c ∈ X} ⊆ (G × H)Z
d

. This is

a group shift over group G × H because F is a homomorphism. It is defined by

forbidding all patterns (p, q) ∈ (G × H)D where p ̸∈ LD(X), or p ∈ LD(X) but

q(0) ̸= f(p). So X′ can indeed be effectively constructed. By Lemma 9(b) we can

then effectively compute the second projection F (X) = ψ(2)(X′).

4. Algorithms for group cellular automata

In this part we apply the algorithms developed for group shifts to analyze group

cellular automata. The basic idea is to view the set of space-time diagrams as a

higher dimensional group shift and to effectively compute one-dimensional projec-

tions in the temporal direction. This way, trace subshifts are obtained. As these are

one-dimensional group shifts, and hence of finite type, the long term dynamics can

be analyzed. A projection in the spatial dimensions provides the limit set of the

cellular automaton.

We first define the central concepts of space-time diagrams, traces and limit

sets, and show that they can be effectively constructed. Then we use this to prove

properties and algorithms concerning several dynamical properties of group cellular

automata. We refer to [15, 21] for more details and known results on the dynamical

properties we consider.

Space-time diagrams

Let X ⊆ GZd

be a d-dimensional group shift and let F : X −→ X be a group

cellular automaton on X. A bi-infinite orbit of F is a sequence . . . c(−1), c(0), c(1), . . .

of configurations c(i) ∈ X such that c(i+1) = F (c(i)) for all i ∈ Z. Such an orbit

can be viewed as the (d+1)-dimensional configuration c ∈ GZd+1

by concatenating

the configurations ci one after the other along the additional dimension, that is,

cu,i = c
(i)
u for all i ∈ Z and u ∈ Zd. The first d dimensions are spatial dimensions

while the (d + 1)st dimension is the temporal dimension. The configuration c is a

space-time diagram of the cellular automaton F . Note that the orbits and space-

time-diagrams are temporally bi-infinite. The set of all space-time diagrams of F is

denoted by ST(F ). Because F is a group homomorphism we have the following.

Lemma 12. ST(F ) ⊆ GZd+1

is a group shift. □

Given X and F we can effectively construct ST(F ). Indeed, we just need to

forbid in spatial slices all the forbidden patterns that define X, and in temporally

consecutive pairs of slices patterns where the local update rule of F is violated. More

precisely, let P be the given finite set of forbidden patterns that defines X = XP ,

and let f : LN (X) −→ G be the given local update rule that defines F with the finite

neighborhood N ⊆ Zd. For any p ∈ P we forbid the (d + 1)-dimensional pattern

p̂ over the domain D × {0} with p̂(u, 0) = p(u) for all u ∈ D, i.e., the spatial

slices are forced to belong to X, and for any neighborhood pattern q ∈ LN (X)
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and for any a ∈ G such that a ̸= f(q) we forbid the pattern q′a with the domain

N × {0} ∪ {(0, 1)} where q′a(u, 0) = q(u) for all u ∈ N and q′a(0, 1) = a, i.e.

consecutive slices are prevented from having an update error according to the local

rule f . Let P ′ be the set of all p̂ and q′a. Then clearly ST(F ) = XP ′ .

Lemma 13. Given X and F one can effectively construct ST(F ). □

Traces

Let D ⊆ Zd be finite. For any orbit . . . , c(−1), c(0), c(1), . . . the sequence

. . . , c(−1)|D, c(0)|D, c(1)|D, . . . of consecutive views in the domain D is a D-trace.

Each c(i)|D is an element of the finite group GD, and hence the trace is a one-

dimensional configuration over the group GD. Let us denote by TrD(F ) ⊆ (GD)Z

the set of all D-traces of F .

Lemma 14. TrD(F ) is a one-dimensional group shift over GD. It is the projection

of ST(F ) on D × Z. □

We call the set TrD(F ) the D-trace subshift of F , or simply a trace subshift

of F . It can be effectively constructed: Given X and F we can use Lemma 13 to

effectively construct the group shift ST(F ) of space-time diagrams, and then by

Corollary 10 we can effectively construct the projection TrD(F ) of ST(F ) on D×Z.

Lemma 15. Given X and F and any finite D ⊆ Zd, one can effectively construct

TrD(F ). □

Limit sets

The limit set ΩF of a cellular automaton F consists of all configurations c(0) ∈ X
that are present in some bi-infinite orbit . . . c(−1), c(0), c(1), . . . In other words, ΩF

is the set of the d-dimensional slices of thickness one of ST(F ) in the d spatial

dimensions. As a projection of the group shift ST(F ), the set ΩF is a group shift.

Lemma 16. ΩF is a d-dimensional group shift over G. It is the projection of ST(F )

on Zd × {0}. □

Using Corollary 10 we immediately get an algorithm to construct the limit set.

Lemma 17. Given X and F , one can effectively construct ΩF . □

By definition it is clear that F (ΩF ) = ΩF so that F is surjective on its limit set.

By a simple compactness argument we have that ΩF =
⋂

n∈N F
n(X), stating that

any configuration that has arbitrarily long sequences of pre-images has an infinite

sequence of pre-images. Note that X ⊇ F (X) ⊇ F 2(X) ⊇ is a decreasing chain of

group shifts. By Theorem 5 there are no infinite strictly decreasing chains of group

shifts, so we have that F k+1(X) = F k(X) holds for some k. Then F j(X) = F k(X)
for all j > k so that ΩF = F k(X). So all group cellular automata reach their limit

set after a finite time:
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Group cellular automata F : X −→ X are stable in the sense that there exists

k ∈ N such that F k(X) = ΩF . □

Periodic points

A well-known open problem asks whether every surjective cellular automaton on

a full shift (even in one-dimension) has a dense set of temporally periodic points.

This has been proved to be the case for one-dimensional cellular automata that are

closing [3] or have equicontinuity points [2]. It is also the case for one-dimensional

group CA [3] and, in any dimension d, for group CA over the cyclic group G =

Zm [5]. It is an immediate corollary of Theorem 2 that the latter results can be

generalized to all group cellular automata, in any dimension and on any group shift,

not just the full shift. Even jointly periodic configurations are dense: a configuration

is called jointly periodic for a cellular automaton if it is temporally periodic and

also totally periodic in space.

Corollary 19. Let F : X −→ X be a group cellular automaton on a d-dimensional

group shift X. Jointly periodic configurations are dense in ΩF . In particular, if F

is surjective then they are dense in X.

Proof. By Lemma 12 the set ST(F ) of space-time diagrams is a (d+1)-dimensional

group shift, and by Theorem 2 totally periodic elements are dense in ST(F ). The

projection π(c) of a totally periodic space-time diagram c on the domain Zd × {0}
is a totally periodic element of ΩF that is also temporally periodic. The density

of totally periodic space-time diagrams c in ST(F ) implies the density of their

projections π(c) in ΩF = π(ST(F )). If F is surjective then ΩF = X.

Injectivity and surjectivity

Another immediate implication of Theorem 2 is a surjunctivity property: every

injective group cellular automaton F : X −→ X is surjective.

Corollary 20. Let F : X −→ X be a group cellular automaton on a d-dimensional

group shift X. If F is injective then it is surjective.

Proof. If F is injective then it is injective among totally periodic configurations

of X. For any fixed k > 0 there are finitely many configurations in X that are

kei-periodic for all i ∈ {1, . . . , d}. These are mapped by F injectively to each

other. Any injective map on a finite set is also surjective, so we see that F is

surjective among totally periodic configurations of X. By Theorem 2 the totally

periodic configurations are dense in X so that F (X) is a dense subset of X. By the

continuity of F it is also closed which means that F (X) = X.

We have that every injective group cellular automaton is bijective. Recall that

a bijective cellular automaton F is automatically reversible, meaning that the in-

verse F−1 is also a cellular automaton. If F is a reversible group cellular automaton
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then clearly so is F−1. Reversible cellular automata are of particular interest due

to their relevance in modeling microscopic physics and in other application do-

mains [16]. While it is decidable if a given one-dimensional cellular automaton is

injective (=reversible) or surjective, the same questions are undecidable for general

two-dimensional cellular automata [14]. As expected, the situation is different for

group cellular automata.

Theorem 21. It is decidable if a given group cellular automaton F : X −→ X over

a given d-dimensional group shift X is injective (surjective).

Proof. By Lemma 17 one can effectively construct the limit set ΩF . The CA F

is surjective if and only if ΩF = X. As equality of given group shifts is decidable

(Corollary 4(b)), it follows that surjectivity is decidable.

For injectivity, recall that a group homomorphism F is injective if and only

if ker(F ) = {1X}. Since ker(F ) is a group shift that can be effectively constructed

(Lemma 6), we can check injectivity by checking the equality of the two group shifts

ker(F ) and {1X}.

The Garden-of-Eden-theorem

The Garden-of-Eden-theorem is among the oldest results in the theory of cellular

automata. It links injectivity and surjectivity. Let us call two configurations c, e ∈
AZd

asymptotic if their difference set diff(c, e) = {u ∈ Zd | cu ̸= eu} is finite.

A cellular automaton F : X −→ X on a subshift X is called pre-injective if for

any asymptotic c, e the following holds: c ̸= e =⇒ F (c) ̸= F (e). So injectivity is

only required among mutually asymptotic configurations. Trivially every injective

cellular automaton is pre-injective but the converse implication is not true. In fact,

the classical Garden-of-Eden-theorem states that on full shifts in any dimension

pre-injectivity is equivalent to surjectivity.

Theorem 22 (the Garden-of-Eden-theorem [25, 26]) A cellular automaton

F : AZd −→ AZd

is pre-injective if and only if it is surjective.

That surjectivity implies pre-injectivity was first proved by E.F.Moore [25], and

the converse implication a year later by J.Myhill [26]. Later the theorem has been

extended to many other settings. For example, it is known that the Garden-of-Eden-

theorem holds for cellular automata over so-called strongly irreducible subshifts of

finite type [10].

Note that the Myhill direction implies surjunctivity: if a cellular automaton is

injective then it is pre-injective and by Myhill’s theorem surjective. For group shifts

we proved surjunctivity differently in Corollary 20, using the density of periodic

points. There is a good reason for this: the Myhill direction of the Garden-of-Eden-

theorem is namely not true for all group cellular automata over group shifts, as

shown by the following trivial example.
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Example 23. Let X = {0Z, 1Z} be the two-element group shift over the two-element

cyclic group Z2, and let F : X −→ X be the group cellular automaton F (0Z) =

F (1Z) = 0Z. Then F is pre-injective but not surjective.

Recall that it is decidable whether a given group cellular automaton is surjective

(Theorem 21). Since surjectivity and pre-injectivity are not equivalent for all group

cellular automata, a natural follow up question is to determine if a given group

cellular automaton is pre-injective. The decidability status of this question remains

open.

Question 1. Is it decidable if a given group cellular automaton is pre-injective ?

Next we show that the Moore direction of the Garden-of-Eden-theorem holds

for all group cellular automata. The proof is based on the fact that all surjective

cellular automata preserve entropy while group cellular automata that are not pre-

injective do not preserve it. The topological entropy of a d-dimensional subshift X

is defined as

h(X) = lim
n→∞

log |LBn(X)|
|Bn|

where Bn = {1, . . . , n}d is the d-dimensional box of size n×· · ·×n. It is well known
that the limit exists: this can be proved, for example, using a multidimensional

version of Fekete’s subadditive lemma [4], or using the Ornstein–Weiss lemma [20]

in the special case of a grid Zd.

Theorem 24. Let F : X −→ X be a group cellular automaton over a group shift

X ⊆ GZd

. If F is surjective then F is pre-injective.

Proof. Suppose F is not pre-injective so F (x) = F (y) for an asymptotic pair

x, y ∈ X, x ̸= y. Then c = xy−1 ∈ X is asymptotic with 1X while c ̸= 1X and

F (c) = F (1X) = 1X. It follows from this fact that the entropy of the kernel of F is

strictly positive, h(ker(F )) > 0. However, by Theorem 14.1 in [28] the entropies

of the group shifts X, F (X) and ker(F ) satisfy the following addition formula:

h(X) = h(F (X)) + h(ker(F )). We then have that h(X) > h(F (X)), implying that

X ̸= F (X), i.e., that F is not surjective.

Nilpotency, equicontinuity and sensitivity

A cellular automaton is called nilpotent if there is only one configuration in the

limit set ΩF . (Clearly the limit set is never empty.) Nilpotency is undecidable even

for cellular automata over one-dimensional full shifts [13, 27]. In the case of group

cellular automata the identity configuration is a fixed point and hence automatically

in the limit set. Nilpotency of group cellular automata can be easily tested by

effectively constructing the limit set (Lemma 17) and testing equivalence with the

singleton group shift {1X}.
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More generally, a cellular automaton F is eventually periodic if Fn+p = Fn for

some n and p ≥ 1, and it is periodic if F p is the identity map for some p ≥ 1.

Nilpotent cellular automata are clearly eventually periodic with p = 1. Note that

eventually periodic cellular automata are periodic on the limit set and, conversely, if

F is periodic on its limit set then it is eventually periodic on X because ΩF = Fn(X)
for some n by Lemma 18.

Theorem 25. It is decidable for a given group cellular automaton G : X −→ X on

a given d-dimensional group shift X whether F is nilpotent, periodic or eventually

periodic.

Proof. We have that F is

• nilpotent if and only if ΩF = {1X},
• eventually periodic if and only if Tr{0}(F ) is finite,

• periodic if and only if it is injective and eventually periodic.

Group shifts ΩF and Tr{0}(F ) can be effectively constructed (Lemma 15 and

Lemma 17). Equivalence of ΩF and {1X} can be tested (Corollary 4(b)) and finite-

ness of a given one-dimensional subshift of finite type is easily checked, so nilpotency

and eventual periodicity are decidable. By Theorem 21 injectivity of F is decidable

so also periodicity can be decided.

A configuration c ∈ X is an equicontinuity point of F : X −→ X if for every finite

D ⊆ Zd there exists a finite E ⊆ Zd such that e|E = c|E implies Fn(e)|D = Fn(c)|D
for all n ≥ 0. Orbits of equicontinuity points can hence be reliably simulated even

if the initial configuration is not precisely known. Let Eq(F ) ⊆ X be the set of

equicontinuity points of F . We call F equicontinuous if Eq(F ) = X.
Cellular automaton F : X −→ X is sensitive to initial conditions, or just sen-

sitive, if there exists a finite observation window D ⊆ Zd such that for every con-

figuration c ∈ X and every finite E ⊆ Zd there is e ∈ X with e|E = c|E but

Fn(e)|D ̸= Fn(c)|D for some n ≥ 0. Clearly c cannot be an equicontinuity point so

for all sensitive F we have Eq(F ) = ∅. For group cellular automata also the converse

holds.

Lemma 26. Let F : X −→ X be a group cellular automaton over a d-dimensional

group shift X. Then exactly one of the following two possibilities holds:

• Eq(F ) = X and F is equicontinuous, or

• Eq(F ) = ∅ and F is sensitive.

Proof. Assume that some c ̸∈ Eq(F ) exists, which means that there exists a finite

D ⊆ Zd such that for all finite E ⊆ Zd there is e ∈ X and n ≥ 0 with e|E = c|E
but Fn(e)|D ̸= Fn(c)|D. Consider an arbitrary c′ ∈ X. For c′′ = c′ec−1 ∈ X we then

have that c′′|E = c′|E but Fn(c′′)|D ̸= Fn(c′)|D. This proves that c′ ̸∈ Eq(F ).
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We can conclude that for group cellular automata either Eq(F ) = X or Eq(F ) =

∅. By definition, Eq(F ) = X is equivalent to equicontinuity of F .

If F is sensitive then Eq(F ) = ∅ holds. Conversely, if F is not sensitive then,

by definition, for all finite D ⊆ Zd there exists c ∈ X and a finite E ⊆ Zd such

that e|E = c|E implies that Fn(e)|D = Fn(c)|D for all n ≥ 0. As above, we can

replace c by any other configuration c′, which implies that all configurations are

equicontinuity points, i.e., Eq(F ) ̸= ∅.

We can decide equicontinuity and sensitivity.

Theorem 27. It is decidable for a given group cellular automaton G : X −→ X
on a given d-dimensional group shift X whether F is equicontinuous or sensitive to

initial conditions.

Proof. By the dichotomy in Lemma 26 it is enough to decide equicontinuity. Let

us show that F is equicontinuous if and only if it is eventually periodic, after which

the decidability follows from Theorem 25.

If F is eventually periodic then it is trivially equicontinuous since there are only

finitely many different functions F k, k ≥ 0, and all these functions are continuous.

Conversely, if F is equicontinuous then one easily sees that there are only finitely

many different traces in Tr{0}(F ). Indeed, equicontinuity at configuration c implies

that there is a finite set E ⊆ Zd such that e|E = c|E implies that Fn(e)0 = Fn(c)0
for all n ≥ 0. As in the proof of Lemma 26 we see that the same set E works for all

configurations c. But then |LE(X)| is an upper bound on the number of different

traces in Tr{0}(F ) because c|E uniquely identifies the positive trace of c (and by

the translation invariance of the trace subshift any k different traces can be shifted

to provide k different positive traces.)

Finiteness of Tr{0}(F ) implies that all traces are periodic with a common period,

so that cellular automaton F is periodic on its limit set. Hence F is eventually

periodic.

Mixing properties

A cellular automaton F : X −→ X is transitive if there is an orbit from every non-

empty open set to every non-empty open set, that is, if for any finite D ⊆ Zd and

all p, q ∈ LD(X) there exists c ∈ X and n ≥ 0 such that c|D = p and Gn(c)|D = q.

It is mixing if there exists such c for every sufficiently large n, that is, if for all D, p

and q as above there is m such that for every n ≥ m there exists c ∈ X such that

c|D = p and Gn(c)|D = q.

For these properties we obtain only semi-algorithms for the negative instances.

Decidability remains open.

Theorem 28. It is semi-decidable for a given group cellular automaton G : X −→
X on a given d-dimensional group shift X whether F is non-transitive or non-mixing.
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Proof. A non-deterministic semi-algorithm guesses a finite D ⊆ Zd, forms the

trace subshift TrD(F ), and verifies that the trace subshift is not transitive (not

mixing, respectively). Clearly F is not transitive (not mixing, respectively) if and

only if such a choice of D exists. For one-dimensional subshifts of finite type, such

as TrD(F ), it is easy to decide transitivity and the mixing property [22].

Question 2. Is it decidable if a given group cellular automaton is transitive (or

mixing) ?

5. Conclusions

We have demonstrated how the “swamp of undecidability” [23] of multidimensional

SFTs and cellular automata is mostly absent in the group setting. For general cellu-

lar automata nilpotency [13, 27], as well as eventual periodicity, equicontinuity and

sensitivity [9] are undecidable on one-dimensional full shifts, and periodicity [17],

as well as sensitivity, mixingness and transitivity [24] are undecidable even among

reversible one-dimensional cellular automata on the full shift; injectivity and surjec-

tivity are undecidable for two-dimensional cellular automata on the full shift [14].

Algorithms and characterizations have been known for linear and additive cellular

automata (on full shifts, sometimes depending on the dimension [7, 8]). Our results

improve these to the greater generality of non-commutative groups and cellular

automata on higher dimensional subshifts. However, it should be noted that the

existing characterizations in the literature typically provide easy to check condi-

tions on the local rule of the cellular automaton for the considered properties, while

algorithms extracted from our proofs are impractical and only serve the purpose of

proving decidability.

It remains open whether it is decidable if a given group cellular automaton is

pre-injective, transitive or mixing.
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[29] H. Wang, Proving theorems by pattern recognition – II, The Bell System Technical
Journal 40(1) (1961) 1–41.


